Research Article
BibTex RIS Cite

COMPARATIVE RETROTRANSPOSON ANALYSIS in WHEAT

Year 2021, Volume: 7 Issue: 3, 369 - 374, 25.09.2021
https://doi.org/10.28979/jarnas.961832

Abstract

The presence of retrotransposons is associated with polyploidy, especially in wheat, and may cause an increase in genome size. In this study, the evolutionary information was aimed to reveal based on the comparison retrotrans-poson movements between bread and einkorn wheat Siyez. For that reason, the transposition of BARE1, Sukkula and Nikita retrotransposons in bread and einkorn wheat Siyez were analysed by using IRAP-PCR molecular mark-er method. Both monomorphic and polymorphic bands in each wheat species have been demonstrated. IRAP-PCR products of Sukkula retrotransposon was showed as 10 bands in bread wheat, but no bands could be deter-mined in einkorn wheat. Nikita retrotransposon was demonstrated as 6 bands in bread wheat, 14 bands in einkorn wheat Siyez. Polymorphism rate was calculated as 81% for Nikita between bread wheat and einkorn wheat Siyez. However, the presence of BARE1 were not observed in both species. The obtained findings suggest that Nikita retrotransposon contributes to genome obesity, especially in bread wheat. The failure of Sukkula retrotransposon detection in einkorn wheat Siyez indicates that Sukkula may be inserted in the genome of bread wheat by horizon-tal gene transfer during wheat domestication events. These results may provide to uncover the organization of wheat genome during domestication.

Supporting Institution

Tübitak 2209-A Öğrenci Projesi

Project Number

1919B01190223

Thanks

This work was supported by The Scientific and Technological Research Council of Turkey (project number 1919B01190223). The authors also thank Dr. Stuart James Lucas for his kind revision.

References

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 2017; 357: 93–97.
  • Bayram E., Yilmaz S., Hamat-Mecbur H., Kartal-Alacam G., Gozukirmizi N. (2012). Nikita retrotransposon movements in callus cultures of barley (Hordeum vulgare L.). POJ, 5(3): 211-215.
  • Bento, M., Pereira, H. S., Rocheta, M., Gustafson, P., Viegas, W., & Silva, M. (2008). Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PloS one, 3(1), e1402. https://doi.org/10.1371/journal.pone.0001402
  • Dice, L. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297-302. https://doi.org/10.2307/1932409
  • Dubcovsky, J., & Dvorak, J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science (New York, N.Y.), 316(5833), 1862–1866. https://doi.org/10.1126/science.1143986
  • Estep, M. C., DeBarry, J. D., & Bennetzen, J. L. (2013). The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Heredity, 110(2), 194–204. https://doi.org/10.1038/hdy.2012.99
  • Harlan J.R., Zohary D. (1996). Cultivated einkorn = Tritcum monococcum L. subsp. monococcum (T. m. monococcum); wild einkorn = T. m. boeoticum and Triticum monococcum L. subsp. aegilopoides (T. m, aegibpoides). Science, 153, 1074.
  • Hartley, G., & O'Neill, R. J. (2019). Centromere Repeats: Hidden Gems of the Genome. Genes, 10(3), 223. https://doi.org/10.3390/genes10030223
  • Heras, J., Domínguez, C., Mata, E., Pascual, V., Lozano, C., Torres, C., & Zarazaga, M. (2015). GelJ--a tool for analyzing DNA fingerprint gel images. BMC bioinformatics, 16, 270. https://doi.org/10.1186/s12859-015-0703-0
  • Hernández-Pinzón I, Cifuentes M, Hénaff E, Santiago N, Espinás ML, Casacuberta JM. The Tnt1 retrotransposon escapes silencing in tobacco, its natural host. PLoS One. 2012;7(3):e33816. Epub 2012 Mar 30. PMID: 22479451; PMCID: PMC3316501. https://doi.org/10.1371/journal.pone.0033816
  • Heun M., Schäfer-Pregl R., Klawan D., Castagna R., Accerbi M., Borghi B., Salamini F. (1997). Site of Einkorn Wheat Domestication Identified by DNA Fingerprinting. Science, 278(5341): 1312-1314.
  • Hidalgo A., Brandolini A. (2014) Nutritional properties of einkorn wheat (Triticum monococcum L.). Journal of the Science of Food and Agriculture, 94(4), 601-12. https://doi.org/10.1002/jsfa.6382
  • International Wheat Genome Sequencing Consortium (IWGSC), IWGSC RefSeq principal investigators:, Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., IWGSC whole-genome assembly principal investigators:, Pozniak, C. J., Stein, N., Choulet, F., Distelfeld, A., Eversole, K., Poland, J., Rogers, J., Ronen, G., Sharpe, A. G., Whole-genome sequencing and assembly:, Pozniak, C., … Uauy, C. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science (New York, N.Y.), 361(6403),
  • Ito, H., & Kakutani, T. (2014). Control of transposable elements in Arabidopsis thaliana. Chromosome research: an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, 22(2), 217–223. https://doi.org/10.1007/s10577-014-9417-9
  • Kalendar, R., Vicient, C. M., Peleg, O., Anamthawat-Jonsson, K., Bolshoy, A., & Schulman, A. H. (2004). Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics, 166(3), 1437–1450. https://doi.org/10.1534/genetics.166.3.1437
  • Karlik E. (2020). Display of Sukkula distributions on Barley Roots via in situ hybridization. Caryologia, 73:3.
  • Kihara H., Yamashita H., Tanaka M. (1959). Genomes of 6x species of Aegilops. Wheat Inf. Ser 8: 3–5.
  • Kumar, A., & Bennetzen, J. L. (1999). Plant retrotransposons. Annual review of genetics, 33, 479–532. https://doi.org/10.1146/annurev.genet.33.1.479
  • Kumekawa, N., Ohtsubo, H., Horiuchi, T., & Ohtsubo, E. (1999). Identification and characterization of novel retrotransposons of the gypsy type in rice. Molecular & general genetics: MGG, 260(6), 593–602. https://doi.org/10.1007/s004380050933
  • Leigh, F., Kalendar, R., Lea, V., Lee, D., Donini, P., & Schulman, A. H. (2003). Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Molecular genetics and genomics: MGG, 269(4), 464–474. https://doi.org/10.1007/s00438-003-0850-2
  • Marakli S., Yilmaz S., Gozukirmizi N. (2012). BARE1 and BAGY2 retrotransposon movements and expression analyses in developing barley seedlings. Biotechnology & Biotechnological Equipment, 26: 3451-3456.
  • Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 15:473-497.
  • Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76(10), 5269–5273. https://doi.org/10.1073/pnas.76.10.5269
  • Nesbitt M. (1998). Where was einkorn wheat domesticated?. Trends in Plant Science, 3: 82-83.
  • Rebollo, R., Romanish, M. T., & Mager, D. L. (2012). Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annual review of genetics, 46, 21–42. https://doi.org/10.1146/annurev-genet-110711-155621
  • SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y., & Bennetzen, J. L. (1998). The paleontology of intergene retrotransposons of maize. Nature genetics, 20(1), 43–45. https://doi.org/10.1038/1695
  • Schulman, A. H., & Kalendar, R. (2005). A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenetic and genome research, 110(1-4), 598–605. https://doi.org/10.1159/000084993
  • Shirasu, K., Schulman, A. H., Lahaye, T., & Schulze-Lefert, P. (2000). A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome research, 10(7), 908–915. https://doi.org/10.1101/gr.10.7.908
  • Vitte, C., & Bennetzen, J. L. (2006). Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17638–17643. https://doi.org/10.1073/pnas.0605618103
  • Yilmaz, S., Marakli, S., & Gozukirmizi, N. (2014). BAGY2 retrotransposon analyses in barley calli cultures and regenerated plantlets. Biochemical genetics, 52(5-6), 233–244. https://doi.org/10.1007/s10528-014-9643-z
Year 2021, Volume: 7 Issue: 3, 369 - 374, 25.09.2021
https://doi.org/10.28979/jarnas.961832

Abstract

Project Number

1919B01190223

References

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 2017; 357: 93–97.
  • Bayram E., Yilmaz S., Hamat-Mecbur H., Kartal-Alacam G., Gozukirmizi N. (2012). Nikita retrotransposon movements in callus cultures of barley (Hordeum vulgare L.). POJ, 5(3): 211-215.
  • Bento, M., Pereira, H. S., Rocheta, M., Gustafson, P., Viegas, W., & Silva, M. (2008). Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in triticale. PloS one, 3(1), e1402. https://doi.org/10.1371/journal.pone.0001402
  • Dice, L. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297-302. https://doi.org/10.2307/1932409
  • Dubcovsky, J., & Dvorak, J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. Science (New York, N.Y.), 316(5833), 1862–1866. https://doi.org/10.1126/science.1143986
  • Estep, M. C., DeBarry, J. D., & Bennetzen, J. L. (2013). The dynamics of LTR retrotransposon accumulation across 25 million years of panicoid grass evolution. Heredity, 110(2), 194–204. https://doi.org/10.1038/hdy.2012.99
  • Harlan J.R., Zohary D. (1996). Cultivated einkorn = Tritcum monococcum L. subsp. monococcum (T. m. monococcum); wild einkorn = T. m. boeoticum and Triticum monococcum L. subsp. aegilopoides (T. m, aegibpoides). Science, 153, 1074.
  • Hartley, G., & O'Neill, R. J. (2019). Centromere Repeats: Hidden Gems of the Genome. Genes, 10(3), 223. https://doi.org/10.3390/genes10030223
  • Heras, J., Domínguez, C., Mata, E., Pascual, V., Lozano, C., Torres, C., & Zarazaga, M. (2015). GelJ--a tool for analyzing DNA fingerprint gel images. BMC bioinformatics, 16, 270. https://doi.org/10.1186/s12859-015-0703-0
  • Hernández-Pinzón I, Cifuentes M, Hénaff E, Santiago N, Espinás ML, Casacuberta JM. The Tnt1 retrotransposon escapes silencing in tobacco, its natural host. PLoS One. 2012;7(3):e33816. Epub 2012 Mar 30. PMID: 22479451; PMCID: PMC3316501. https://doi.org/10.1371/journal.pone.0033816
  • Heun M., Schäfer-Pregl R., Klawan D., Castagna R., Accerbi M., Borghi B., Salamini F. (1997). Site of Einkorn Wheat Domestication Identified by DNA Fingerprinting. Science, 278(5341): 1312-1314.
  • Hidalgo A., Brandolini A. (2014) Nutritional properties of einkorn wheat (Triticum monococcum L.). Journal of the Science of Food and Agriculture, 94(4), 601-12. https://doi.org/10.1002/jsfa.6382
  • International Wheat Genome Sequencing Consortium (IWGSC), IWGSC RefSeq principal investigators:, Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., IWGSC whole-genome assembly principal investigators:, Pozniak, C. J., Stein, N., Choulet, F., Distelfeld, A., Eversole, K., Poland, J., Rogers, J., Ronen, G., Sharpe, A. G., Whole-genome sequencing and assembly:, Pozniak, C., … Uauy, C. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science (New York, N.Y.), 361(6403),
  • Ito, H., & Kakutani, T. (2014). Control of transposable elements in Arabidopsis thaliana. Chromosome research: an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, 22(2), 217–223. https://doi.org/10.1007/s10577-014-9417-9
  • Kalendar, R., Vicient, C. M., Peleg, O., Anamthawat-Jonsson, K., Bolshoy, A., & Schulman, A. H. (2004). Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics, 166(3), 1437–1450. https://doi.org/10.1534/genetics.166.3.1437
  • Karlik E. (2020). Display of Sukkula distributions on Barley Roots via in situ hybridization. Caryologia, 73:3.
  • Kihara H., Yamashita H., Tanaka M. (1959). Genomes of 6x species of Aegilops. Wheat Inf. Ser 8: 3–5.
  • Kumar, A., & Bennetzen, J. L. (1999). Plant retrotransposons. Annual review of genetics, 33, 479–532. https://doi.org/10.1146/annurev.genet.33.1.479
  • Kumekawa, N., Ohtsubo, H., Horiuchi, T., & Ohtsubo, E. (1999). Identification and characterization of novel retrotransposons of the gypsy type in rice. Molecular & general genetics: MGG, 260(6), 593–602. https://doi.org/10.1007/s004380050933
  • Leigh, F., Kalendar, R., Lea, V., Lee, D., Donini, P., & Schulman, A. H. (2003). Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Molecular genetics and genomics: MGG, 269(4), 464–474. https://doi.org/10.1007/s00438-003-0850-2
  • Marakli S., Yilmaz S., Gozukirmizi N. (2012). BARE1 and BAGY2 retrotransposon movements and expression analyses in developing barley seedlings. Biotechnology & Biotechnological Equipment, 26: 3451-3456.
  • Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 15:473-497.
  • Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76(10), 5269–5273. https://doi.org/10.1073/pnas.76.10.5269
  • Nesbitt M. (1998). Where was einkorn wheat domesticated?. Trends in Plant Science, 3: 82-83.
  • Rebollo, R., Romanish, M. T., & Mager, D. L. (2012). Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annual review of genetics, 46, 21–42. https://doi.org/10.1146/annurev-genet-110711-155621
  • SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y., & Bennetzen, J. L. (1998). The paleontology of intergene retrotransposons of maize. Nature genetics, 20(1), 43–45. https://doi.org/10.1038/1695
  • Schulman, A. H., & Kalendar, R. (2005). A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenetic and genome research, 110(1-4), 598–605. https://doi.org/10.1159/000084993
  • Shirasu, K., Schulman, A. H., Lahaye, T., & Schulze-Lefert, P. (2000). A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome research, 10(7), 908–915. https://doi.org/10.1101/gr.10.7.908
  • Vitte, C., & Bennetzen, J. L. (2006). Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17638–17643. https://doi.org/10.1073/pnas.0605618103
  • Yilmaz, S., Marakli, S., & Gozukirmizi, N. (2014). BAGY2 retrotransposon analyses in barley calli cultures and regenerated plantlets. Biochemical genetics, 52(5-6), 233–244. https://doi.org/10.1007/s10528-014-9643-z
There are 30 citations in total.

Details

Primary Language English
Subjects Industrial Biotechnology
Journal Section Makaleler
Authors

Seray Altıntaş 0000-0001-9215-8435

Bekir Ahmet Ilgar 0000-0001-7907-8465

Elif Karlık 0000-0003-0669-2725

Project Number 1919B01190223
Publication Date September 25, 2021
Submission Date July 3, 2021
Published in Issue Year 2021 Volume: 7 Issue: 3

Cite

APA Altıntaş, S., Ilgar, B. A., & Karlık, E. (2021). COMPARATIVE RETROTRANSPOSON ANALYSIS in WHEAT. Journal of Advanced Research in Natural and Applied Sciences, 7(3), 369-374. https://doi.org/10.28979/jarnas.961832
AMA Altıntaş S, Ilgar BA, Karlık E. COMPARATIVE RETROTRANSPOSON ANALYSIS in WHEAT. JARNAS. September 2021;7(3):369-374. doi:10.28979/jarnas.961832
Chicago Altıntaş, Seray, Bekir Ahmet Ilgar, and Elif Karlık. “COMPARATIVE RETROTRANSPOSON ANALYSIS in WHEAT”. Journal of Advanced Research in Natural and Applied Sciences 7, no. 3 (September 2021): 369-74. https://doi.org/10.28979/jarnas.961832.
EndNote Altıntaş S, Ilgar BA, Karlık E (September 1, 2021) COMPARATIVE RETROTRANSPOSON ANALYSIS in WHEAT. Journal of Advanced Research in Natural and Applied Sciences 7 3 369–374.
IEEE S. Altıntaş, B. A. Ilgar, and E. Karlık, “COMPARATIVE RETROTRANSPOSON ANALYSIS in WHEAT”, JARNAS, vol. 7, no. 3, pp. 369–374, 2021, doi: 10.28979/jarnas.961832.
ISNAD Altıntaş, Seray et al. “COMPARATIVE RETROTRANSPOSON ANALYSIS in WHEAT”. Journal of Advanced Research in Natural and Applied Sciences 7/3 (September 2021), 369-374. https://doi.org/10.28979/jarnas.961832.
JAMA Altıntaş S, Ilgar BA, Karlık E. COMPARATIVE RETROTRANSPOSON ANALYSIS in WHEAT. JARNAS. 2021;7:369–374.
MLA Altıntaş, Seray et al. “COMPARATIVE RETROTRANSPOSON ANALYSIS in WHEAT”. Journal of Advanced Research in Natural and Applied Sciences, vol. 7, no. 3, 2021, pp. 369-74, doi:10.28979/jarnas.961832.
Vancouver Altıntaş S, Ilgar BA, Karlık E. COMPARATIVE RETROTRANSPOSON ANALYSIS in WHEAT. JARNAS. 2021;7(3):369-74.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).