Research Article
BibTex RIS Cite
Year 2022, Volume: 8 Issue: 1, 63 - 75, 10.03.2022
https://doi.org/10.28979/jarnas.1003367

Abstract

References

  • Bandiello, E., Ávila, J., Gil-Escrig, L., Tekelenburg, E., Sessolo, M., & Bolink, H. J. (2016). Influence of mobile ions on the electroluminescence characteristics of methylammonium lead iodide perovskite diodes. Journal of Materials Chemistry A, 4(47), 18614-18620. doi: 10.1039/C6TA06854E
  • Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. doi: 10.1103/PhysRev.71.809 Breternitz, J., & Schorr, S. (2018). What Defines a Perovskite? Advanced Energy Materials, 8(34), 1802366. doi: https://onlinelibrary.wiley.com/doi/10.1002/aenm.201802366
  • Cai, Y., Lv, J., & Feng, J. (2012). Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy. Journal of Polymers and the Environment, 21, 108-114. Doi: 10.1007/s10924-012-0534-2
  • Dou, L., Wong, A. B., Yu, Y., Lai, M., Kornienko, N., Eaton, S. W., . . . Yang, P. (2015). Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255), 1518-1521. doi:10.1126/science.aac7660
  • Einstein, A. (1907). Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Annalen der Physik, 327(1), 180-190. doi: https://doi.org/10.1002/andp.19063270110
  • Fang, H.-H., Raissa, R., Abdu-Aguye, M., Adjokatse, S., Blake, G. R., Even, J., & Loi, M. A. (2015). Hybrid Perovskites: Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals (Adv. Funct. Mater. 16/2015). Advanced Functional Materials, 25(16), 2346-2346. doi: https://doi.org/10.1002/adfm.201570107
  • Grüneisen, E. (1912). Theorie des festen Zustandes einatomiger Elemente. Annalen der Physik, 344(12), 257-306. doi: https://doi.org/10.1002/andp.19123441202
  • Kawano, N., Koshimizu, M., Sun, Y., Yahaba, N. F., Yutaka, Yanagida, T., & Asai, K. (2014). Effects of Organic Moieties on Luminescence Properties of Organic–Inorganic Layered Perovskite-Type Compounds. The Journal of Physical Chemistry C, 118(17), 9101-9106. doi: 10.1021/jp4114305
  • Kooijman, A., Muscarella, L. A., & Williams, R. M. (2019). Perovskite Thin Film Materials Stabilized and Enhanced by Zinc(II) Doping. Applied Sciences, 9(8), 1678. Doi: https://doi.org/10.3390/app9081678
  • Kurt, A. (2020). Pressure dependence of the Raman modes for orthorhombic and monoclinic phases of CsPbI3 at room temperature. Journal of Applied Physics, 128(7), 075106. doi: 10.1063/5.0012355
  • Liu, S., Li, F., Han, X., Xu, L., Yao, F., & Liu, Y. (2018). Preparation and Two-Photon Photoluminescence Properties of Organic Inorganic Hybrid Perovskites (C6H5CH2NH3)2PbBr4 and (C6H5CH2NH3)2PbI4. Applied Sciences, 8(11), 2286. Doi: https://doi.org/10.3390/app8112286
  • Mao, H.-K., Chen, X.-J., Ding, Y., Li, B., & Wang, L. (2018). Solids, liquids, and gases under high pressure. Reviews of Modern Physics, 90(1), 015007. doi: 10.1103/RevModPhys.90.015007
  • Ou, T., Liu, C., Yan, H., Han, Y., Wang, Q., Liu, X., . . . Gao, C. (2019). Effects of pressure on the ionic transport and photoelectrical properties of CsPbBr3. Applied Physics Letters, 114(6), 062105. doi: 10.1063/1.5079919
  • Ou, T., Ma, X., Yan, H., Shen, W., Liu, H., Han, Y., . . . Gao, C. (2018). Pressure effects on the inductive loop, mixed conduction, and photoresponsivity in formamidinium lead bromide perovskite. Applied Physics Letters, 113(26), 262105. doi: 10.1063/1.5063394
  • Planck, M. (1901). Ueber das Gesetz der Energieverteilung im Normalspectrum. Annalen der Physik, 309(3), 553-563. doi: https://doi.org/10.1002/andp.19013090310
  • Qin, X., Dong, H., & Hu, W. (2015). Green light-emitting diode from bromine based organic-inorganic halide perovskite. Science China Materials, 58(3), 186-191. doi: 10.1007/s40843-015-0035-4
  • Ren, X., Yan, X., Ahmad, A. S., Cheng, H., Li, Y., Zhao, Y., . . . Wang, S. (2019). Pressure-Induced Phase Transition and Band Gap Engineering in Propylammonium Lead Bromide Perovskite. The Journal of Physical Chemistry C, 123(24), 15204-15208. doi: 10.1021/acs.jpcc.9b02854
  • Ren, X., Yan, X., Gennep, D. V., Cheng, H., Wang, L., Li, Y., . . . Wang, S. (2020). Bandgap widening by pressure-induced disorder in two-dimensional lead halide perovskite. Applied Physics Letters, 116(10), 101901. doi: 10.1063/1.5143795 Stacey, F. D., & Hodgkinson, J. H. (2019). Thermodynamics with the Grüneisen parameter: Fundamentals and applications to high pressure physics and geophysics. Physics of the Earth and Planetary Interiors, 286, 42. doi: 10.1016/j.pepi.2018.10.006
  • Tian, C., Liang, Y., Chen, W., Huang, Y., Huang, X., Tian, F., & Yang, X. (2020). Hydrogen-bond enhancement triggered structural evolution and band gap engineering of hybrid perovskite (C6H5CH2NH3)2PbI4 under high pressure. Physical Chemistry Chemical Physics, 22(4), 1841-1846. doi: 10.1039/C9CP05904K
  • Wang, L., Ou, T., Wang, K., Xiao, G., Gao, C., & Zou, B. (2017). Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride. Applied Physics Letters, 111(23), 233901. doi: 10.1063/1.5004186
  • Wang, L., Wang, K., Xiao, G., Zeng, Q., & Zou, B. (2016). Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride. The Journal of Physical Chemistry Letters, 7(24), 5273-5279. doi: 10.1021/acs.jpclett.6b02420
  • Wang, Y., Lü, X., Yang, W., Wen, T., Yang, L., Ren, X., . . . Zhao, Y. (2015). Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. Journal of the American Chemical Society, 137(34), 11144-11149. doi: 10.1021/jacs.5b06346
  • Yang, S., Niu, W., Wang, A.-L., Fan, Z., Chen, B., Tan, C., . . . Zhang, H. (2017). Ultrathin Two-Dimensional Organic–Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability. Angewandte Chemie International Edition, 56(15), 4252-4255. doi: https://doi.org/10.1002/anie.201701134
  • Yuan, Y., Liu, X.-F., Ma, X., Wang, X., Li, X., Xiao, J., . . . Wang, L. (2019). Large Band Gap Narrowing and Prolonged Carrier Lifetime of (C4H9NH3)2PbI4 under High Pressure. Advanced Science, 6(15), 1900240. doi: https://doi.org/10.1002/advs.201900240
  • Zhang, L., Wang, Y., Lv, J., & Ma, Y. (2017). Materials discovery at high pressures. Nature Reviews Materials, 2(4), 17005. doi: 10.1038/natrevmats.2017.5

Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modulus as Functions Of Pressure In (C6H5CH2NH3)2 PBI4

Year 2022, Volume: 8 Issue: 1, 63 - 75, 10.03.2022
https://doi.org/10.28979/jarnas.1003367

Abstract

Hybrid organic-inorganic perovskites (HOIPs) exhibit multiple structural phase transitions, which result in enhanced mechanical and electronic properties of these perovskites. Order-disorder of organic components was thought to be the main factor to cause these phase transitions up to the last decade; however, recent research about HOIPs have shown that the structural phase transition also occurs with the induced pressure or temperature. The research studies related to the pressure have attracted a great deal of scholarly interest due to its contribution to the func-tionality of HOIPs in many current applications. Two-dimensional halide perovskites having been synthesized in the last few years have been increasingly studied thanks to its superior hysteresis in flexibility and mechanical properties under pressure. It is important to understand and model theoretically how induced pressure affects mechanical and electronic properties of (PMA)2PbI4 in order to develop new potential applications in optoelectronics. In this study, the isothermal mode-Grüneisen parameter, the isothermal compressibility, and the bulk modulus were calculated as functions of pressure at ambient temperature by using the calculated Raman frequencies and observed volume data for the selected IR modes in (PMA)2PbI4. These calculated parameters were compared with the observed measurements reported for the Pbca, Pccn and Pccn (isostructural) phases in the studied perovskites. The results obtained in the present study, which were highly compatible with the experimental measurements, showed that (PMA)2PbI4 is usable in optoelectronic applications.

References

  • Bandiello, E., Ávila, J., Gil-Escrig, L., Tekelenburg, E., Sessolo, M., & Bolink, H. J. (2016). Influence of mobile ions on the electroluminescence characteristics of methylammonium lead iodide perovskite diodes. Journal of Materials Chemistry A, 4(47), 18614-18620. doi: 10.1039/C6TA06854E
  • Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. doi: 10.1103/PhysRev.71.809 Breternitz, J., & Schorr, S. (2018). What Defines a Perovskite? Advanced Energy Materials, 8(34), 1802366. doi: https://onlinelibrary.wiley.com/doi/10.1002/aenm.201802366
  • Cai, Y., Lv, J., & Feng, J. (2012). Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy. Journal of Polymers and the Environment, 21, 108-114. Doi: 10.1007/s10924-012-0534-2
  • Dou, L., Wong, A. B., Yu, Y., Lai, M., Kornienko, N., Eaton, S. W., . . . Yang, P. (2015). Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 349(6255), 1518-1521. doi:10.1126/science.aac7660
  • Einstein, A. (1907). Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Annalen der Physik, 327(1), 180-190. doi: https://doi.org/10.1002/andp.19063270110
  • Fang, H.-H., Raissa, R., Abdu-Aguye, M., Adjokatse, S., Blake, G. R., Even, J., & Loi, M. A. (2015). Hybrid Perovskites: Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals (Adv. Funct. Mater. 16/2015). Advanced Functional Materials, 25(16), 2346-2346. doi: https://doi.org/10.1002/adfm.201570107
  • Grüneisen, E. (1912). Theorie des festen Zustandes einatomiger Elemente. Annalen der Physik, 344(12), 257-306. doi: https://doi.org/10.1002/andp.19123441202
  • Kawano, N., Koshimizu, M., Sun, Y., Yahaba, N. F., Yutaka, Yanagida, T., & Asai, K. (2014). Effects of Organic Moieties on Luminescence Properties of Organic–Inorganic Layered Perovskite-Type Compounds. The Journal of Physical Chemistry C, 118(17), 9101-9106. doi: 10.1021/jp4114305
  • Kooijman, A., Muscarella, L. A., & Williams, R. M. (2019). Perovskite Thin Film Materials Stabilized and Enhanced by Zinc(II) Doping. Applied Sciences, 9(8), 1678. Doi: https://doi.org/10.3390/app9081678
  • Kurt, A. (2020). Pressure dependence of the Raman modes for orthorhombic and monoclinic phases of CsPbI3 at room temperature. Journal of Applied Physics, 128(7), 075106. doi: 10.1063/5.0012355
  • Liu, S., Li, F., Han, X., Xu, L., Yao, F., & Liu, Y. (2018). Preparation and Two-Photon Photoluminescence Properties of Organic Inorganic Hybrid Perovskites (C6H5CH2NH3)2PbBr4 and (C6H5CH2NH3)2PbI4. Applied Sciences, 8(11), 2286. Doi: https://doi.org/10.3390/app8112286
  • Mao, H.-K., Chen, X.-J., Ding, Y., Li, B., & Wang, L. (2018). Solids, liquids, and gases under high pressure. Reviews of Modern Physics, 90(1), 015007. doi: 10.1103/RevModPhys.90.015007
  • Ou, T., Liu, C., Yan, H., Han, Y., Wang, Q., Liu, X., . . . Gao, C. (2019). Effects of pressure on the ionic transport and photoelectrical properties of CsPbBr3. Applied Physics Letters, 114(6), 062105. doi: 10.1063/1.5079919
  • Ou, T., Ma, X., Yan, H., Shen, W., Liu, H., Han, Y., . . . Gao, C. (2018). Pressure effects on the inductive loop, mixed conduction, and photoresponsivity in formamidinium lead bromide perovskite. Applied Physics Letters, 113(26), 262105. doi: 10.1063/1.5063394
  • Planck, M. (1901). Ueber das Gesetz der Energieverteilung im Normalspectrum. Annalen der Physik, 309(3), 553-563. doi: https://doi.org/10.1002/andp.19013090310
  • Qin, X., Dong, H., & Hu, W. (2015). Green light-emitting diode from bromine based organic-inorganic halide perovskite. Science China Materials, 58(3), 186-191. doi: 10.1007/s40843-015-0035-4
  • Ren, X., Yan, X., Ahmad, A. S., Cheng, H., Li, Y., Zhao, Y., . . . Wang, S. (2019). Pressure-Induced Phase Transition and Band Gap Engineering in Propylammonium Lead Bromide Perovskite. The Journal of Physical Chemistry C, 123(24), 15204-15208. doi: 10.1021/acs.jpcc.9b02854
  • Ren, X., Yan, X., Gennep, D. V., Cheng, H., Wang, L., Li, Y., . . . Wang, S. (2020). Bandgap widening by pressure-induced disorder in two-dimensional lead halide perovskite. Applied Physics Letters, 116(10), 101901. doi: 10.1063/1.5143795 Stacey, F. D., & Hodgkinson, J. H. (2019). Thermodynamics with the Grüneisen parameter: Fundamentals and applications to high pressure physics and geophysics. Physics of the Earth and Planetary Interiors, 286, 42. doi: 10.1016/j.pepi.2018.10.006
  • Tian, C., Liang, Y., Chen, W., Huang, Y., Huang, X., Tian, F., & Yang, X. (2020). Hydrogen-bond enhancement triggered structural evolution and band gap engineering of hybrid perovskite (C6H5CH2NH3)2PbI4 under high pressure. Physical Chemistry Chemical Physics, 22(4), 1841-1846. doi: 10.1039/C9CP05904K
  • Wang, L., Ou, T., Wang, K., Xiao, G., Gao, C., & Zou, B. (2017). Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride. Applied Physics Letters, 111(23), 233901. doi: 10.1063/1.5004186
  • Wang, L., Wang, K., Xiao, G., Zeng, Q., & Zou, B. (2016). Pressure-Induced Structural Evolution and Band Gap Shifts of Organometal Halide Perovskite-Based Methylammonium Lead Chloride. The Journal of Physical Chemistry Letters, 7(24), 5273-5279. doi: 10.1021/acs.jpclett.6b02420
  • Wang, Y., Lü, X., Yang, W., Wen, T., Yang, L., Ren, X., . . . Zhao, Y. (2015). Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite. Journal of the American Chemical Society, 137(34), 11144-11149. doi: 10.1021/jacs.5b06346
  • Yang, S., Niu, W., Wang, A.-L., Fan, Z., Chen, B., Tan, C., . . . Zhang, H. (2017). Ultrathin Two-Dimensional Organic–Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability. Angewandte Chemie International Edition, 56(15), 4252-4255. doi: https://doi.org/10.1002/anie.201701134
  • Yuan, Y., Liu, X.-F., Ma, X., Wang, X., Li, X., Xiao, J., . . . Wang, L. (2019). Large Band Gap Narrowing and Prolonged Carrier Lifetime of (C4H9NH3)2PbI4 under High Pressure. Advanced Science, 6(15), 1900240. doi: https://doi.org/10.1002/advs.201900240
  • Zhang, L., Wang, Y., Lv, J., & Ma, Y. (2017). Materials discovery at high pressures. Nature Reviews Materials, 2(4), 17005. doi: 10.1038/natrevmats.2017.5
There are 25 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Article
Authors

Arzu Kurt 0000-0003-3196-100X

Early Pub Date March 10, 2022
Publication Date March 10, 2022
Submission Date October 1, 2021
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

APA Kurt, A. (2022). Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modulus as Functions Of Pressure In (C6H5CH2NH3)2 PBI4. Journal of Advanced Research in Natural and Applied Sciences, 8(1), 63-75. https://doi.org/10.28979/jarnas.1003367
AMA Kurt A. Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modulus as Functions Of Pressure In (C6H5CH2NH3)2 PBI4. JARNAS. March 2022;8(1):63-75. doi:10.28979/jarnas.1003367
Chicago Kurt, Arzu. “Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modulus As Functions Of Pressure In (C6H5CH2NH3)2 PBI4”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 1 (March 2022): 63-75. https://doi.org/10.28979/jarnas.1003367.
EndNote Kurt A (March 1, 2022) Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modulus as Functions Of Pressure In (C6H5CH2NH3)2 PBI4. Journal of Advanced Research in Natural and Applied Sciences 8 1 63–75.
IEEE A. Kurt, “Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modulus as Functions Of Pressure In (C6H5CH2NH3)2 PBI4”, JARNAS, vol. 8, no. 1, pp. 63–75, 2022, doi: 10.28979/jarnas.1003367.
ISNAD Kurt, Arzu. “Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modulus As Functions Of Pressure In (C6H5CH2NH3)2 PBI4”. Journal of Advanced Research in Natural and Applied Sciences 8/1 (March 2022), 63-75. https://doi.org/10.28979/jarnas.1003367.
JAMA Kurt A. Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modulus as Functions Of Pressure In (C6H5CH2NH3)2 PBI4. JARNAS. 2022;8:63–75.
MLA Kurt, Arzu. “Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modulus As Functions Of Pressure In (C6H5CH2NH3)2 PBI4”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 1, 2022, pp. 63-75, doi:10.28979/jarnas.1003367.
Vancouver Kurt A. Calculation Of Gruneisen Parameter, Compressibility, And Bulk Modulus as Functions Of Pressure In (C6H5CH2NH3)2 PBI4. JARNAS. 2022;8(1):63-75.


TR Dizin 20466


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).