Research Article
BibTex RIS Cite
Year 2022, Volume: 8 Issue: 4, 753 - 761, 15.12.2022
https://doi.org/10.28979/jarnas.1112146

Abstract

References

  • Aktepe A., Turker A.K., Ersoz S., Dalgic A., & Barisci N. (2018). An inventory classification approach combining expert systems, clustering, and fuzzy logic with the ABC method, and an application. South African Journal of Industrial Engineering, 29(1), 49–62. https://doi.org/10.7166/29-1-1784
  • Bacchetti, A., Plebani, F., Saccani, N., & Syntetos, A. A. (2013). Empirically-driven hierarchical classifica-tion of stock keeping units. Focusing on Inventories: Research and Applications, 143(2), 263–274. https://doi.org/10.1016/j.ijpe.2012.06.010
  • Bala, P. K. (2009). Data Mining for Retail Inventory Management. In Advances in Electrical Engineering and Computational Science (Vol. 39, pp. 587–598). Springer, Dordrecht.
  • Bala, P. K. (2012). Improving inventory performance with clustering based demand forecasts. Journal of Modelling in Management, 7(1), 23–37. https://doi.org/10.1108/17465661211208794
  • Balugani, E., Lolli, F., Gamberini, R., Rimini, B., & Regattieri, A. (2018). Clustering for inventory control systems. 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018, 51(11), 1174–1179. https://doi.org/10.1016/j.ifacol.2018.08.431
  • Cakir, O., & Canbolat, M. S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367–1378. https://doi.org/10.1016/j.eswa.2007.08.041
  • Chiou, Y.-C., & Lan, L. W. (2005). Ordering and Warehousing Strategies for Multi-item Multi-Branch Firm’s Inventory: Clustering Approaches. Journal of the Eastern Asia Society for Transportation Studies, 6, 2809–2821. https://doi.org/10.11175/easts.6.2809
  • Chu, C.-W., Liang, G.-S., & Liao, C.-T. (2008). Controlling inventory by combining ABC analysis and fuzzy classification. Computers & Industrial Engineering, 55(4), 841–851. https://doi.org/10.1016/j.cie.2008.03.006
  • Ernst, R., & Cohen, M. A. (1990). Operations related groups (ORGs): A clustering procedure for produc-tion/inventory systems. Journal of Operations Management, 9(4), 574–598. https://doi.org/10.1016/0272-6963(90)90010-B
  • Errasti, A., Chackelson, C., & Poler, R. (2010). An Expert System for Inventory Replenishment Optimiza-tion. An Expert System for Inventory Replenishment Optimization, 129–136.
  • F. Wang, H. Y. Ng, & T. E. Ng. (2018). Novel SKU Classification Approach for Autonomous Inventory Planning. 2018 IEEE International Conference on Industrial Engineering and Engineering Manage-ment (IEEM), 1441–1445. https://doi.org/10.1109/IEEM.2018.8607736
  • Flores, B. E., Olson, D. L., & Dorai, V. K. (1992). Management of multicriteria inventory classification. Mathematical and Computer Modelling, 16(12), 71–82. https://doi.org/10.1016/0895-7177(92)90021-C
  • K. P. Sinaga & M. Yang. (2020). Unsupervised K-Means Clustering Algorithm. IEEE Access, 8, 80716–80727. https://doi.org/10.1109/ACCESS.2020.2988796
  • Ladhari, T., Babai, M. Z., & Lajili, I. (2016). Multi-criteria inventory classification: New consensual proce-dures. IMA Journal of Management Mathematics, 27(2), 335–351. https://doi.org/10.1093/imaman/dpv003
  • Likas, A., Vlassis, N., & J. Verbeek, J. (2003). The global k-means clustering algorithm. Biometrics, 36(2), 451–461. https://doi.org/10.1016/S0031-3203(02)00060-2
  • Lolli, F., Ishizaka, A., Gamberini, R., & Rimini, B. (2017). A multicriteria framework for inventory classi-fication and control with application to intermittent demand. Journal of Multi-Criteria Decision Analysis, 24(5–6), 275–285. https://doi.org/10.1002/mcda.1620
  • López-Soto, D., Angel-Bello, F., Yacout, S., & Alvarez, A. (2017). A multi-start algorithm to design a multi-class classifier for a multi-criteria ABC inventory classification problem. Expert Systems with Applications, 81, 12–21. https://doi.org/10.1016/j.eswa.2017.02.048
  • Millstein, M. A., Yang, L., & Li, H. (2014). Optimizing ABC inventory grouping decisions. International Journal of Production Economics, 148, 71–80. https://doi.org/10.1016/j.ijpe.2013.11.007
  • Mohamad, I., & Usman, D. (2013). Standardization and Its Effects on K-Means Clustering Algorithm. Research Journal of Applied Sciences, Engineering and Technology, 6(17), 3299–3303.
  • Park, J., Bae, H., & Bae, J. (2014). Cross-evaluation-based weighted linear optimization for multi-criteria ABC inventory classification. Computers & Industrial Engineering, 76, 40–48. https://doi.org/10.1016/j.cie.2014.07.020
  • Pujiarto, B., Hanafi, M., Setyawan, A., Imani, A. N., & Prasetya, E. R. (2021). A Data Mining Practical Approach to Inventory Management and Logistics Optimization. International Journal of Informatics and Information Systems; Vol 4, No 2: September 2021DO - 10.47738/Ijiis.V4i2.109. http://ijiis.org/index.php/IJIIS/article/view/109
  • Raja, A. M. L., Ai, T. J., & Astanti, R. D. (2016). A Clustering Classification of Spare Parts for Improving Inventory Policies. IOP Conference Series: Materials Science and Engineering, 114, 012075. https://doi.org/10.1088/1757-899x/114/1/012075
  • Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimi-zation. Computers & Operations Research, 33(3), 695–700. https://doi.org/10.1016/j.cor.2004.07.014
  • Razavi Hajiagha, S. H., Daneshvar, M., & Antucheviciene, J. (2021). A hybrid fuzzy-stochastic multi-criteria ABC inventory classification using possibilistic chance-constrained programming. Soft Com-puting, 25(2), 1065–1083. https://doi.org/10.1007/s00500-020-05204-z
  • Rezaei, J., & Dowlatshahi, S. (2010). A rule-based multi-criteria approach to inventory classification. In-ternational Journal of Production Research, 48(23), 7107–7126. https://doi.org/10.1080/00207540903348361
  • Rossetti, M. D., & Achlerkar, A. V. (2011). Evaluation of segmentation techniques for inventory man-agement in large scale multi-item inventory systems. International Journal of Logistics Systems and Management, 8(4), 403–424. https://doi.org/10.1504/IJLSM.2011.039598
  • Russo, F. (2019). Adaptive product classification for inventory optimization in multi-echelon networks. Eras-mus University.
  • S. Na, L. Xumin, & G. Yong. (2010). Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm. 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, 63–67. https://doi.org/10.1109/IITSI.2010.74
  • SAP Library ABC-XYZ Analysis. (n.d.). https://help.sap.com/doc/saphelp_scm700_ehp02/7.0.2/en-US/4d/ 33d92edb9e00d3e10000000a42189b/content.htm?no_cache=true
  • Sheikh-Zadeh, A., Rossetti, M. D., & Scott, M. A. (2021). Performance-based inventory classification methods for large-Scale multi-echelon replenishment systems. Omega, 101, 102276. https://doi.org/10.1016/j.omega.2020.102276
  • T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, & A. Y. Wu. (2002). An effi-cient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892. https://doi.org/10.1109/TPAMI.2002.1017616
  • Tavassoli, M., Faramarzi, G. R., & Farzipoor Saen, R. (2014). Multi-criteria ABC inventory classification using DEA-discriminant analysis to predict group membership of new items. International Journal of Applied Management Science, 6(2), 171–189. https://doi.org/10.1504/IJAMS.2014.060904
  • Yang, L., Li, H., Campbell, J. F., & Sweeney, D. C. (2017). Integrated multi-period dynamic inventory classification and control. International Journal of Production Economics, 189, 86–96. https://doi.org/10.1016/j.ijpe.2017.04.010

A Methodology for Clustering Items with Seasonal and Non-seasonal Demand Patterns for Inventory Management

Year 2022, Volume: 8 Issue: 4, 753 - 761, 15.12.2022
https://doi.org/10.28979/jarnas.1112146

Abstract

Item clustering has become one of the most important topics in terms of effective inventory management in supply chains. Classification of items in terms of their features, sales or consumption volume and variation is a prerequisite to determine differentiated inventory policies as well as parameters, most common of which is service levels. Volume classification is easily obtained by well-known Pareto approach while coefficient of variance is usu-ally used for variation dimension. Hence, it is not always applicable to classify items under different product families with different demand patterns in terms of variation. In this paper, we propose two algorithms, one based on statistical analysis and the other an unsupervised machine learning algorithm using K-means clustering, both of which differ-entiate seasonal and non-seasonal products where an item’s variation is evaluated with respect to seasonality of the product group it belongs to. We then calculate the efficiency of two proposed approaches by standard deviation within each cluster and absolute difference of percentage of volume and item numbers. We also compare the outputs of two algorithms with the methodology which is based on coefficient of variance and is currently in use at the company which is a leading major domestic appliance manufacturer. The results show that the statistical method we propose generates superior outputs than the other two for both seasonal and non-seasonal demand patterns.

References

  • Aktepe A., Turker A.K., Ersoz S., Dalgic A., & Barisci N. (2018). An inventory classification approach combining expert systems, clustering, and fuzzy logic with the ABC method, and an application. South African Journal of Industrial Engineering, 29(1), 49–62. https://doi.org/10.7166/29-1-1784
  • Bacchetti, A., Plebani, F., Saccani, N., & Syntetos, A. A. (2013). Empirically-driven hierarchical classifica-tion of stock keeping units. Focusing on Inventories: Research and Applications, 143(2), 263–274. https://doi.org/10.1016/j.ijpe.2012.06.010
  • Bala, P. K. (2009). Data Mining for Retail Inventory Management. In Advances in Electrical Engineering and Computational Science (Vol. 39, pp. 587–598). Springer, Dordrecht.
  • Bala, P. K. (2012). Improving inventory performance with clustering based demand forecasts. Journal of Modelling in Management, 7(1), 23–37. https://doi.org/10.1108/17465661211208794
  • Balugani, E., Lolli, F., Gamberini, R., Rimini, B., & Regattieri, A. (2018). Clustering for inventory control systems. 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018, 51(11), 1174–1179. https://doi.org/10.1016/j.ifacol.2018.08.431
  • Cakir, O., & Canbolat, M. S. (2008). A web-based decision support system for multi-criteria inventory classification using fuzzy AHP methodology. Expert Systems with Applications, 35(3), 1367–1378. https://doi.org/10.1016/j.eswa.2007.08.041
  • Chiou, Y.-C., & Lan, L. W. (2005). Ordering and Warehousing Strategies for Multi-item Multi-Branch Firm’s Inventory: Clustering Approaches. Journal of the Eastern Asia Society for Transportation Studies, 6, 2809–2821. https://doi.org/10.11175/easts.6.2809
  • Chu, C.-W., Liang, G.-S., & Liao, C.-T. (2008). Controlling inventory by combining ABC analysis and fuzzy classification. Computers & Industrial Engineering, 55(4), 841–851. https://doi.org/10.1016/j.cie.2008.03.006
  • Ernst, R., & Cohen, M. A. (1990). Operations related groups (ORGs): A clustering procedure for produc-tion/inventory systems. Journal of Operations Management, 9(4), 574–598. https://doi.org/10.1016/0272-6963(90)90010-B
  • Errasti, A., Chackelson, C., & Poler, R. (2010). An Expert System for Inventory Replenishment Optimiza-tion. An Expert System for Inventory Replenishment Optimization, 129–136.
  • F. Wang, H. Y. Ng, & T. E. Ng. (2018). Novel SKU Classification Approach for Autonomous Inventory Planning. 2018 IEEE International Conference on Industrial Engineering and Engineering Manage-ment (IEEM), 1441–1445. https://doi.org/10.1109/IEEM.2018.8607736
  • Flores, B. E., Olson, D. L., & Dorai, V. K. (1992). Management of multicriteria inventory classification. Mathematical and Computer Modelling, 16(12), 71–82. https://doi.org/10.1016/0895-7177(92)90021-C
  • K. P. Sinaga & M. Yang. (2020). Unsupervised K-Means Clustering Algorithm. IEEE Access, 8, 80716–80727. https://doi.org/10.1109/ACCESS.2020.2988796
  • Ladhari, T., Babai, M. Z., & Lajili, I. (2016). Multi-criteria inventory classification: New consensual proce-dures. IMA Journal of Management Mathematics, 27(2), 335–351. https://doi.org/10.1093/imaman/dpv003
  • Likas, A., Vlassis, N., & J. Verbeek, J. (2003). The global k-means clustering algorithm. Biometrics, 36(2), 451–461. https://doi.org/10.1016/S0031-3203(02)00060-2
  • Lolli, F., Ishizaka, A., Gamberini, R., & Rimini, B. (2017). A multicriteria framework for inventory classi-fication and control with application to intermittent demand. Journal of Multi-Criteria Decision Analysis, 24(5–6), 275–285. https://doi.org/10.1002/mcda.1620
  • López-Soto, D., Angel-Bello, F., Yacout, S., & Alvarez, A. (2017). A multi-start algorithm to design a multi-class classifier for a multi-criteria ABC inventory classification problem. Expert Systems with Applications, 81, 12–21. https://doi.org/10.1016/j.eswa.2017.02.048
  • Millstein, M. A., Yang, L., & Li, H. (2014). Optimizing ABC inventory grouping decisions. International Journal of Production Economics, 148, 71–80. https://doi.org/10.1016/j.ijpe.2013.11.007
  • Mohamad, I., & Usman, D. (2013). Standardization and Its Effects on K-Means Clustering Algorithm. Research Journal of Applied Sciences, Engineering and Technology, 6(17), 3299–3303.
  • Park, J., Bae, H., & Bae, J. (2014). Cross-evaluation-based weighted linear optimization for multi-criteria ABC inventory classification. Computers & Industrial Engineering, 76, 40–48. https://doi.org/10.1016/j.cie.2014.07.020
  • Pujiarto, B., Hanafi, M., Setyawan, A., Imani, A. N., & Prasetya, E. R. (2021). A Data Mining Practical Approach to Inventory Management and Logistics Optimization. International Journal of Informatics and Information Systems; Vol 4, No 2: September 2021DO - 10.47738/Ijiis.V4i2.109. http://ijiis.org/index.php/IJIIS/article/view/109
  • Raja, A. M. L., Ai, T. J., & Astanti, R. D. (2016). A Clustering Classification of Spare Parts for Improving Inventory Policies. IOP Conference Series: Materials Science and Engineering, 114, 012075. https://doi.org/10.1088/1757-899x/114/1/012075
  • Ramanathan, R. (2006). ABC inventory classification with multiple-criteria using weighted linear optimi-zation. Computers & Operations Research, 33(3), 695–700. https://doi.org/10.1016/j.cor.2004.07.014
  • Razavi Hajiagha, S. H., Daneshvar, M., & Antucheviciene, J. (2021). A hybrid fuzzy-stochastic multi-criteria ABC inventory classification using possibilistic chance-constrained programming. Soft Com-puting, 25(2), 1065–1083. https://doi.org/10.1007/s00500-020-05204-z
  • Rezaei, J., & Dowlatshahi, S. (2010). A rule-based multi-criteria approach to inventory classification. In-ternational Journal of Production Research, 48(23), 7107–7126. https://doi.org/10.1080/00207540903348361
  • Rossetti, M. D., & Achlerkar, A. V. (2011). Evaluation of segmentation techniques for inventory man-agement in large scale multi-item inventory systems. International Journal of Logistics Systems and Management, 8(4), 403–424. https://doi.org/10.1504/IJLSM.2011.039598
  • Russo, F. (2019). Adaptive product classification for inventory optimization in multi-echelon networks. Eras-mus University.
  • S. Na, L. Xumin, & G. Yong. (2010). Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm. 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, 63–67. https://doi.org/10.1109/IITSI.2010.74
  • SAP Library ABC-XYZ Analysis. (n.d.). https://help.sap.com/doc/saphelp_scm700_ehp02/7.0.2/en-US/4d/ 33d92edb9e00d3e10000000a42189b/content.htm?no_cache=true
  • Sheikh-Zadeh, A., Rossetti, M. D., & Scott, M. A. (2021). Performance-based inventory classification methods for large-Scale multi-echelon replenishment systems. Omega, 101, 102276. https://doi.org/10.1016/j.omega.2020.102276
  • T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, & A. Y. Wu. (2002). An effi-cient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892. https://doi.org/10.1109/TPAMI.2002.1017616
  • Tavassoli, M., Faramarzi, G. R., & Farzipoor Saen, R. (2014). Multi-criteria ABC inventory classification using DEA-discriminant analysis to predict group membership of new items. International Journal of Applied Management Science, 6(2), 171–189. https://doi.org/10.1504/IJAMS.2014.060904
  • Yang, L., Li, H., Campbell, J. F., & Sweeney, D. C. (2017). Integrated multi-period dynamic inventory classification and control. International Journal of Production Economics, 189, 86–96. https://doi.org/10.1016/j.ijpe.2017.04.010
There are 33 citations in total.

Details

Primary Language English
Subjects Industrial Engineering
Journal Section Research Article
Authors

Burak Kandemir 0000-0003-0540-7670

Early Pub Date December 13, 2022
Publication Date December 15, 2022
Submission Date May 10, 2022
Published in Issue Year 2022 Volume: 8 Issue: 4

Cite

APA Kandemir, B. (2022). A Methodology for Clustering Items with Seasonal and Non-seasonal Demand Patterns for Inventory Management. Journal of Advanced Research in Natural and Applied Sciences, 8(4), 753-761. https://doi.org/10.28979/jarnas.1112146
AMA Kandemir B. A Methodology for Clustering Items with Seasonal and Non-seasonal Demand Patterns for Inventory Management. JARNAS. December 2022;8(4):753-761. doi:10.28979/jarnas.1112146
Chicago Kandemir, Burak. “A Methodology for Clustering Items With Seasonal and Non-Seasonal Demand Patterns for Inventory Management”. Journal of Advanced Research in Natural and Applied Sciences 8, no. 4 (December 2022): 753-61. https://doi.org/10.28979/jarnas.1112146.
EndNote Kandemir B (December 1, 2022) A Methodology for Clustering Items with Seasonal and Non-seasonal Demand Patterns for Inventory Management. Journal of Advanced Research in Natural and Applied Sciences 8 4 753–761.
IEEE B. Kandemir, “A Methodology for Clustering Items with Seasonal and Non-seasonal Demand Patterns for Inventory Management”, JARNAS, vol. 8, no. 4, pp. 753–761, 2022, doi: 10.28979/jarnas.1112146.
ISNAD Kandemir, Burak. “A Methodology for Clustering Items With Seasonal and Non-Seasonal Demand Patterns for Inventory Management”. Journal of Advanced Research in Natural and Applied Sciences 8/4 (December 2022), 753-761. https://doi.org/10.28979/jarnas.1112146.
JAMA Kandemir B. A Methodology for Clustering Items with Seasonal and Non-seasonal Demand Patterns for Inventory Management. JARNAS. 2022;8:753–761.
MLA Kandemir, Burak. “A Methodology for Clustering Items With Seasonal and Non-Seasonal Demand Patterns for Inventory Management”. Journal of Advanced Research in Natural and Applied Sciences, vol. 8, no. 4, 2022, pp. 753-61, doi:10.28979/jarnas.1112146.
Vancouver Kandemir B. A Methodology for Clustering Items with Seasonal and Non-seasonal Demand Patterns for Inventory Management. JARNAS. 2022;8(4):753-61.


TR Dizin 20466


DOAJ 32869



Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).