Research Article
BibTex RIS Cite

Gemideki Buhar Sıkıştırmalı Soğutma Ünitesinde Deniz Suyu Sıcaklığının Soğutma Performansına Etkisinin Eksergoekonomi Metoduyla Analizi

Year 2023, Volume: 9 Issue: 4, 775 - 787, 22.12.2023
https://doi.org/10.28979/jarnas.1249704

Abstract

Bu çalışmada, deniz suyunun kondensere giriş sıcaklığı araştırma parametresi olarak alınan buhar sıkıştırmalı bir gemi soğutma sisteminin performansı eksergoekonomik analiz yöntemiyle belirlenerek soğutma sistem süreçlerinin ekserji maliyetleri hesaplanmıştır. Deniz suyunun kondensere giriş sıcaklıkları 20.5 oC, 24.5 oC ve 29.5 oC olarak ölçülmüş ve soğutucu akışkan olarak R22 kullanılmıştır. Buhar sıkıştırmalı soğutma sisteminin her bir elemanında oluşan ekserji tahribatlarının maliyeti eksergoekonomik analiz metodu ile hesaplanmıştır. Eksergoekonomik analiz sonuçları, kondenserdeki R22 soğutucu akışkanın yoğuşma sürecinde ekserji tahribatı maliyetinin en yüksek seviyede olduğunu göstermiştir. Çalışmanın yapıldığı gemiye ait soğutma sisteminde bulunan kondenserin ekonomiklik kriterinin kondensere giren deniz suyu sıcaklığı arttıkça iyileştiği gözlemlenmiştir. Parasal giderler açısından sistem bileşenleri değerlendirildiğinde, en yüksek maliyetli bileşenin kompresör olduğu bulunmuştur. Ekserji tahribatı maliyetleri açısından sistem bileşenleri değerlendirildiğinde, kondenser, kompresör, LT evaporatörü ve MT evaporatöründe sırasıyla 0.2552 ($/saat), 0.2519 ($/saat), 0.0527 ($/saat), 0.0288 ($/saat) olarak hesaplanmıştır. Bu sonuca göre, sistem performansının iyileştirilmesi için, kondenser işletim performansının iyileştirilmesi veya kondenserin yenilenmesi gerektiği bulunmuştur. Bileşenler arasında kondenser 0.2552 $/saat değeri nedeniyle en yüksek ekserji tahribat maliyetine sahip olduğu hesaplanmıştır.

References

  • Armstrong, D. J., Gómez Maqueo Chew, Y., Faedi, F., & Pollacco, D. (2014). A catalogue of tempera-tures for Kepler eclipsing binary stars. Monthly Notices of the Royal Astronomical Society, 437(4), 3473- 3481. Retrieved from: https://academic.oup.com/mnras/article/437/4/3473/1006401
  • Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. (2009). The chemical composition of the Sun. Annual review of astronomy and astrophysics, 47, 481-522. Retrieved from: https://www.annualreviews.org/doi/full/10.1146/annurev.astro.46.060407.145222
  • Bayo, A., Rodrigo, C., y Navascués, D. B., Solano, E., Gutiérrez, R., Morales-Calderón, M., & Allard, F. (2008). VOSA: virtual observatory SED analyzer-An application to the Collinder 69 open cluster. Astronomy & Astrophysics, 492(1), 277-287. Retrieved from: https://www.aanda.org/articles/aa/abs/2008/46/aa10395-08/aa10395-08.html
  • Borkovits, T., Hajdu, T., Sztakovics, J., Rappaport, S., Levine, A., Bíró, I. B., & Klagyivik, P. (2016). A comprehensive study of the Kepler triples via eclipse timing. Monthly Notices of the Royal Astronomical Society, 455(4), 4136-4165. Retrieved from: https://academic.oup.com/mnras/article/455/4/4136/1264839
  • Borucki, W. J., Koch, D., Basri, G., Batalha, N., Brown, T., Caldwell, D., ... & Prsa, A. (2010). Kepler planetdetection mission: introduction and first results. Science, 327(5968), 977-980. Retrieved from: https://www.science.org/doi/10.1126/science.1185402
  • Choi, J., Dotter, A., Conroy, C., Cantiello, M., Paxton, B., & Johnson, B. D. (2016). Mesa isochrones and stellar tracks (MIST). I. Solar-scaled models. The Astrophysical Journal, 823(2), 102. Retrieved from: https://iopscience.iop.org/article/10.3847/0004-637X/823/2/102/meta
  • Conroy, K. E., Prša, A., Stassun, K. G., Orosz, J. A., Fabrycky, D. C., & Welsh, W. F. (2014). Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems. The Astronomical Journal, 147(2), 45. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/147/2/45
  • Dotter, A. (2016). MESA Isochrones and Stellar Tracks (MIST) 0: methods for the construction of stellar isochrones. The Astrophysical Journal Supplement Series, 222(1), 8. Retrieved from: https://iopscience.iop.org/article/10.3847/0067-0049/222/1/8/meta
  • Eker, Z., Soydugan, F., Bilir, S., Bakış, V., Aliçavuş., Özer, S., ... & Köse, Y. (2020). Empirical bolo-metric correction coefficients for nearby main-sequence stars in the Gaia era. Monthly Notices of the Royal Astronomical Society, 496(3), 3887-3905. Retrieved from: https://academic.oup.com/mnras/article/496/3/3887/5869829
  • Gaia-Collaboration, Klioner, S. A., Mignard, F., Lindegren, L., Bastian, U., McMillan, P. J., ... & Hodgkin, S. T. (2021). Gaia Early Data Release 3: Acceleration of the Solar System from Gaia astrometry. Retrieved from: https://www.aanda.org/articles/aa/full_html/2021/05/aa39734-20/aa39734-20.html
  • Gaulme, P., & Guzik, J. A. (2019). Systematic search for stellar pulsators in the eclipsing binaries ob-served by Kepler. Astronomy & Astrophysics, 630, A106. Retrieved from: https://www.aanda.org/articles/aa/full_html/2019/10/aa35821-19/aa35821-19.html
  • Kahraman Aliçavuş, F., Handler, G., Aliçavuş, F., De Cat, P., Bedding, T. R., Lampens, P., ... & Leone, F. (2022). Mass transfer and tidally tilted pulsation in the Algol-type system TZ Dra. Monthly Notices of the Royal Astronomical Society, 510(1), 1413-1424. Retrieved from: https://academic.oup.com/mnras/article-abstract/510/1/1413/6449399?redirectedFrom=fulltext
  • Kirk, B., Conroy, K., Prša, A., Abdul-Masih, M., Kochoska, A., MatijeviČ, G., ... & Borucki, W. (2016). Kepler eclipsing binary stars. VII. The catalog of eclipsing binaries found in the entire Kepler data set. The Astronomical Journal, 151(3), 68. Retrieved from: https://iopscience.iop.org/article/10.3847/0004- 6256/151/3/68
  • Kurucz, R. L. (1993). ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-Rom. Re-trieved from: https://ui.adsabs.harvard.edu/abs/1993KurCD..13.....K
  • Lucy, L. B. (1967). Gravity-darkening for stars with convective envelopes. Zeitschrift fur Astrophysik, 65, 89. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1967ZA.....65...89L
  • Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., & Timmes, F. (2011). Modules for experiments in stellar astrophysics (MESA). The Astrophysical Journal Supplement Series, 192(1), 3. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/192/1/3/meta
  • Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., ... & Townsend, R. (2013). Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. The Astrophysical Journal Supplement Series, 208(1), 4. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/208/1/4/meta
  • Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., ... & Timmes, F. X. (2015). Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. The Astrophysical Journal Supplement Series, 220(1), 15. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/220/1/15/meta
  • Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., Duffell, P., ... & Timmes, F. X. (2018). Modules for Experiments in Stellar Astrophysics (): Convective Boundaries, Element Diffusion, and Massive Star Explosions. The Astrophysical Journal Supplement Series, 234(2), 34. Retrieved from: https://iopscience.iop.org/article/10.3847/1538-4365/aaa5a8/meta
  • Prša, A., Batalha, N., Slawson, R. W., Doyle, L. R., Welsh, W. F., Orosz, J. A., ... & Borucki, W. (2011). Kepler eclipsing binary stars. I. Catalog and principal characterization of 1879 eclipsing binaries in the first data release. The Astronomical Journal, 141(3), 83. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/141/3/83
  • Ricker, G. R., Latham, D. W., Vanderspek, R. K., Ennico, K. A., Bakos, G., Brown, T. M., ... & Worden, S. P. (2010, January). Transiting exoplanet survey satellite (tess). In American Astronomical Society Meeting Abstracts# 215 (Vol. 215, pp. 450-06). Retrieved from: https://ui.adsabs.harvard.edu/abs/2010AAS...21545006R/abstract
  • Rucinski, S. M. (1969). The proximity effects in close binary systems. II. The bolometric reflection effect for stars with deep convective envelopes. Acta Astronomica, 19, 245. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1969AcA....19..245R
  • Schlafly, E. F., & Finkbeiner, D. P. (2011). Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. The Astrophysical Journal, 737(2), 103. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-637X/737/2/103
  • Slawson, R. W., Prša, A., Welsh, W. F., Orosz, J. A., Rucker, M., Batalha, N., ... & Koch, D. (2011). Kepler eclipsing binary stars. II. 2165 eclipsing binaries in the second data release. The Astronomical Journal, 142(5), 160. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/142/5/160
  • Southworth, J. (2013). The solar-type eclipsing binary system LL Aquarii. Astronomy & Astrophysics, 557, A119. Retrieved from: https://www.aanda.org/articles/aa/full_html/2013/09/aa22195-13/aa22195- 13.html
  • Torres, G., Lacy, C. H. S., Claret, A., & Sabby, J. A. (2000). Absolute dimensions of the unevolved B-type eclipsing binary GG Orionis. The Astronomical Journal, 120(6), 3226. Retrieved from: https://iopscience.iop.org/article/10.1086/316855
  • Von Zeipel, H. (1924). The radiative equilibrium of a rotating system of gaseous masses. Monthly No-tices of Journal of Advanced Research in Natural and Applied Sciences 2023, Vol. 9, Issue 4, Pages: 822-830 830 the Royal Astronomical Society, 84, 665-683. Retrieved from: https://academic.oup.com/mnras/article/84/9/665/951714
  • Wilson, R. E., & Devinney, E. J. (1971). Realization of accurate close-binary light curves: application to MR Cygni. The Astrophysical Journal, 166, 605. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1971ApJ...166..605W
  • Zola, S., Gazeas, K., Kreiner, J. M., Ogloza, W., Siwak, M., Koziel-Wierzbowska, D., & Winiarski, M. (2010). Physical parameters of components in close binary systems–VII. Monthly Notices of the Royal Astronomical Society, 408(1), 464-474. Retrieved from: https://academic.oup.com/mnras/article/408/1/464/105876

Exergoeconomic Analysis of The Performance of a Ship Cooling System Whose Condensing Unit is Cooled by Seawater

Year 2023, Volume: 9 Issue: 4, 775 - 787, 22.12.2023
https://doi.org/10.28979/jarnas.1249704

Abstract

In this study, the exergy costs of the cooling system processes were calculated by determining the performance of a vapour compression cooling system, whose seawater inlet temperature to the condenser was taken as the research parameter, using exergoeconomic analysis method. Seawater temperatures were measured as 20.5 oC, 24.5 oC and 29.5 oC and R22 was used as the refrigerant in the cooling system. The cost of exergy destruction in each element of the vapor compression refrigeration system was calculated by the exergoeconomic analysis method. The
exergoeconomic analysis results showed that the exergy destruction cost of the R22 refrigerant in the condenser is at the highest level in the condensation process. It has been observed that the economic criteria of the condenser in the cooling system of the ship where the study was carried out improves as the sea water temperature entering the condenser increases. When system components are evaluated in terms of monetary costs, it has been found that the compressor is the costliest component. When the system components were evaluated in terms of exergy destruction costs, it was calculated respectively as 0.2552 ($/hour), 0.2519 ($/hour), 0.0527 ($/hour), 0.0288 ($/hour) for the condenser, compressor, LT evaporator and MT evaporator. According to this result, it was found that the condenser operating performance should be improved, or the condenser should be renewed in order to improve the system performance. It was calculated that among the components, the condenser had the highest exergy destruction cost due to its value of 0.2552 $/hour per.

References

  • Armstrong, D. J., Gómez Maqueo Chew, Y., Faedi, F., & Pollacco, D. (2014). A catalogue of tempera-tures for Kepler eclipsing binary stars. Monthly Notices of the Royal Astronomical Society, 437(4), 3473- 3481. Retrieved from: https://academic.oup.com/mnras/article/437/4/3473/1006401
  • Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. (2009). The chemical composition of the Sun. Annual review of astronomy and astrophysics, 47, 481-522. Retrieved from: https://www.annualreviews.org/doi/full/10.1146/annurev.astro.46.060407.145222
  • Bayo, A., Rodrigo, C., y Navascués, D. B., Solano, E., Gutiérrez, R., Morales-Calderón, M., & Allard, F. (2008). VOSA: virtual observatory SED analyzer-An application to the Collinder 69 open cluster. Astronomy & Astrophysics, 492(1), 277-287. Retrieved from: https://www.aanda.org/articles/aa/abs/2008/46/aa10395-08/aa10395-08.html
  • Borkovits, T., Hajdu, T., Sztakovics, J., Rappaport, S., Levine, A., Bíró, I. B., & Klagyivik, P. (2016). A comprehensive study of the Kepler triples via eclipse timing. Monthly Notices of the Royal Astronomical Society, 455(4), 4136-4165. Retrieved from: https://academic.oup.com/mnras/article/455/4/4136/1264839
  • Borucki, W. J., Koch, D., Basri, G., Batalha, N., Brown, T., Caldwell, D., ... & Prsa, A. (2010). Kepler planetdetection mission: introduction and first results. Science, 327(5968), 977-980. Retrieved from: https://www.science.org/doi/10.1126/science.1185402
  • Choi, J., Dotter, A., Conroy, C., Cantiello, M., Paxton, B., & Johnson, B. D. (2016). Mesa isochrones and stellar tracks (MIST). I. Solar-scaled models. The Astrophysical Journal, 823(2), 102. Retrieved from: https://iopscience.iop.org/article/10.3847/0004-637X/823/2/102/meta
  • Conroy, K. E., Prša, A., Stassun, K. G., Orosz, J. A., Fabrycky, D. C., & Welsh, W. F. (2014). Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems. The Astronomical Journal, 147(2), 45. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/147/2/45
  • Dotter, A. (2016). MESA Isochrones and Stellar Tracks (MIST) 0: methods for the construction of stellar isochrones. The Astrophysical Journal Supplement Series, 222(1), 8. Retrieved from: https://iopscience.iop.org/article/10.3847/0067-0049/222/1/8/meta
  • Eker, Z., Soydugan, F., Bilir, S., Bakış, V., Aliçavuş., Özer, S., ... & Köse, Y. (2020). Empirical bolo-metric correction coefficients for nearby main-sequence stars in the Gaia era. Monthly Notices of the Royal Astronomical Society, 496(3), 3887-3905. Retrieved from: https://academic.oup.com/mnras/article/496/3/3887/5869829
  • Gaia-Collaboration, Klioner, S. A., Mignard, F., Lindegren, L., Bastian, U., McMillan, P. J., ... & Hodgkin, S. T. (2021). Gaia Early Data Release 3: Acceleration of the Solar System from Gaia astrometry. Retrieved from: https://www.aanda.org/articles/aa/full_html/2021/05/aa39734-20/aa39734-20.html
  • Gaulme, P., & Guzik, J. A. (2019). Systematic search for stellar pulsators in the eclipsing binaries ob-served by Kepler. Astronomy & Astrophysics, 630, A106. Retrieved from: https://www.aanda.org/articles/aa/full_html/2019/10/aa35821-19/aa35821-19.html
  • Kahraman Aliçavuş, F., Handler, G., Aliçavuş, F., De Cat, P., Bedding, T. R., Lampens, P., ... & Leone, F. (2022). Mass transfer and tidally tilted pulsation in the Algol-type system TZ Dra. Monthly Notices of the Royal Astronomical Society, 510(1), 1413-1424. Retrieved from: https://academic.oup.com/mnras/article-abstract/510/1/1413/6449399?redirectedFrom=fulltext
  • Kirk, B., Conroy, K., Prša, A., Abdul-Masih, M., Kochoska, A., MatijeviČ, G., ... & Borucki, W. (2016). Kepler eclipsing binary stars. VII. The catalog of eclipsing binaries found in the entire Kepler data set. The Astronomical Journal, 151(3), 68. Retrieved from: https://iopscience.iop.org/article/10.3847/0004- 6256/151/3/68
  • Kurucz, R. L. (1993). ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-Rom. Re-trieved from: https://ui.adsabs.harvard.edu/abs/1993KurCD..13.....K
  • Lucy, L. B. (1967). Gravity-darkening for stars with convective envelopes. Zeitschrift fur Astrophysik, 65, 89. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1967ZA.....65...89L
  • Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., & Timmes, F. (2011). Modules for experiments in stellar astrophysics (MESA). The Astrophysical Journal Supplement Series, 192(1), 3. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/192/1/3/meta
  • Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., ... & Townsend, R. (2013). Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. The Astrophysical Journal Supplement Series, 208(1), 4. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/208/1/4/meta
  • Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., ... & Timmes, F. X. (2015). Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. The Astrophysical Journal Supplement Series, 220(1), 15. Retrieved from: https://iopscience.iop.org/article/10.1088/0067-0049/220/1/15/meta
  • Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., Duffell, P., ... & Timmes, F. X. (2018). Modules for Experiments in Stellar Astrophysics (): Convective Boundaries, Element Diffusion, and Massive Star Explosions. The Astrophysical Journal Supplement Series, 234(2), 34. Retrieved from: https://iopscience.iop.org/article/10.3847/1538-4365/aaa5a8/meta
  • Prša, A., Batalha, N., Slawson, R. W., Doyle, L. R., Welsh, W. F., Orosz, J. A., ... & Borucki, W. (2011). Kepler eclipsing binary stars. I. Catalog and principal characterization of 1879 eclipsing binaries in the first data release. The Astronomical Journal, 141(3), 83. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/141/3/83
  • Ricker, G. R., Latham, D. W., Vanderspek, R. K., Ennico, K. A., Bakos, G., Brown, T. M., ... & Worden, S. P. (2010, January). Transiting exoplanet survey satellite (tess). In American Astronomical Society Meeting Abstracts# 215 (Vol. 215, pp. 450-06). Retrieved from: https://ui.adsabs.harvard.edu/abs/2010AAS...21545006R/abstract
  • Rucinski, S. M. (1969). The proximity effects in close binary systems. II. The bolometric reflection effect for stars with deep convective envelopes. Acta Astronomica, 19, 245. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1969AcA....19..245R
  • Schlafly, E. F., & Finkbeiner, D. P. (2011). Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. The Astrophysical Journal, 737(2), 103. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-637X/737/2/103
  • Slawson, R. W., Prša, A., Welsh, W. F., Orosz, J. A., Rucker, M., Batalha, N., ... & Koch, D. (2011). Kepler eclipsing binary stars. II. 2165 eclipsing binaries in the second data release. The Astronomical Journal, 142(5), 160. Retrieved from: https://iopscience.iop.org/article/10.1088/0004-6256/142/5/160
  • Southworth, J. (2013). The solar-type eclipsing binary system LL Aquarii. Astronomy & Astrophysics, 557, A119. Retrieved from: https://www.aanda.org/articles/aa/full_html/2013/09/aa22195-13/aa22195- 13.html
  • Torres, G., Lacy, C. H. S., Claret, A., & Sabby, J. A. (2000). Absolute dimensions of the unevolved B-type eclipsing binary GG Orionis. The Astronomical Journal, 120(6), 3226. Retrieved from: https://iopscience.iop.org/article/10.1086/316855
  • Von Zeipel, H. (1924). The radiative equilibrium of a rotating system of gaseous masses. Monthly No-tices of Journal of Advanced Research in Natural and Applied Sciences 2023, Vol. 9, Issue 4, Pages: 822-830 830 the Royal Astronomical Society, 84, 665-683. Retrieved from: https://academic.oup.com/mnras/article/84/9/665/951714
  • Wilson, R. E., & Devinney, E. J. (1971). Realization of accurate close-binary light curves: application to MR Cygni. The Astrophysical Journal, 166, 605. Retrieved from: https://articles.adsabs.harvard.edu/pdf/1971ApJ...166..605W
  • Zola, S., Gazeas, K., Kreiner, J. M., Ogloza, W., Siwak, M., Koziel-Wierzbowska, D., & Winiarski, M. (2010). Physical parameters of components in close binary systems–VII. Monthly Notices of the Royal Astronomical Society, 408(1), 464-474. Retrieved from: https://academic.oup.com/mnras/article/408/1/464/105876
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Makaleler
Authors

Cihan Nacak 0000-0001-9805-4397

Betül Sarac 0000-0003-3876-7314

Teoman Ayhan 0000-0003-2917-5069

Early Pub Date October 5, 2023
Publication Date December 22, 2023
Submission Date February 10, 2023
Published in Issue Year 2023 Volume: 9 Issue: 4

Cite

APA Nacak, C., Sarac, B., & Ayhan, T. (2023). Gemideki Buhar Sıkıştırmalı Soğutma Ünitesinde Deniz Suyu Sıcaklığının Soğutma Performansına Etkisinin Eksergoekonomi Metoduyla Analizi. Journal of Advanced Research in Natural and Applied Sciences, 9(4), 775-787. https://doi.org/10.28979/jarnas.1249704
AMA Nacak C, Sarac B, Ayhan T. Gemideki Buhar Sıkıştırmalı Soğutma Ünitesinde Deniz Suyu Sıcaklığının Soğutma Performansına Etkisinin Eksergoekonomi Metoduyla Analizi. JARNAS. December 2023;9(4):775-787. doi:10.28979/jarnas.1249704
Chicago Nacak, Cihan, Betül Sarac, and Teoman Ayhan. “Gemideki Buhar Sıkıştırmalı Soğutma Ünitesinde Deniz Suyu Sıcaklığının Soğutma Performansına Etkisinin Eksergoekonomi Metoduyla Analizi”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 4 (December 2023): 775-87. https://doi.org/10.28979/jarnas.1249704.
EndNote Nacak C, Sarac B, Ayhan T (December 1, 2023) Gemideki Buhar Sıkıştırmalı Soğutma Ünitesinde Deniz Suyu Sıcaklığının Soğutma Performansına Etkisinin Eksergoekonomi Metoduyla Analizi. Journal of Advanced Research in Natural and Applied Sciences 9 4 775–787.
IEEE C. Nacak, B. Sarac, and T. Ayhan, “Gemideki Buhar Sıkıştırmalı Soğutma Ünitesinde Deniz Suyu Sıcaklığının Soğutma Performansına Etkisinin Eksergoekonomi Metoduyla Analizi”, JARNAS, vol. 9, no. 4, pp. 775–787, 2023, doi: 10.28979/jarnas.1249704.
ISNAD Nacak, Cihan et al. “Gemideki Buhar Sıkıştırmalı Soğutma Ünitesinde Deniz Suyu Sıcaklığının Soğutma Performansına Etkisinin Eksergoekonomi Metoduyla Analizi”. Journal of Advanced Research in Natural and Applied Sciences 9/4 (December 2023), 775-787. https://doi.org/10.28979/jarnas.1249704.
JAMA Nacak C, Sarac B, Ayhan T. Gemideki Buhar Sıkıştırmalı Soğutma Ünitesinde Deniz Suyu Sıcaklığının Soğutma Performansına Etkisinin Eksergoekonomi Metoduyla Analizi. JARNAS. 2023;9:775–787.
MLA Nacak, Cihan et al. “Gemideki Buhar Sıkıştırmalı Soğutma Ünitesinde Deniz Suyu Sıcaklığının Soğutma Performansına Etkisinin Eksergoekonomi Metoduyla Analizi”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 4, 2023, pp. 775-87, doi:10.28979/jarnas.1249704.
Vancouver Nacak C, Sarac B, Ayhan T. Gemideki Buhar Sıkıştırmalı Soğutma Ünitesinde Deniz Suyu Sıcaklığının Soğutma Performansına Etkisinin Eksergoekonomi Metoduyla Analizi. JARNAS. 2023;9(4):775-87.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).