Research Article
BibTex RIS Cite

Anti-aging effect of TMQ on EPDM for Various Cure Systems

Year 2023, Volume: 9 Issue: 4, 938 - 951, 22.12.2023
https://doi.org/10.28979/jarnas.1285817

Abstract

Ethylene propylene diene rubber (EPDM) is a common raw material for weather resistant rubber products used in lots of areas such as cable, automotive, marine industry and aviation applications. Superior processing behaviour, electrical properties and moderate high temperature resistance also make EPDM an attractive raw material for a wide range of further industrial performance requirements. As well as the other general purpose rubbers, EPDM needs to be protected against thermo-oxidative aging. Short and long term aging behaviour of both sulphur and peroxide cured EPDM has been studied in literature. However, to the authors’ best knowledge, there is not any study in literature systematically evaluating a common rubber antioxidant 2,2,4-trimethyl-1,2-dihydroquinoline (TMQ) for investigating theoretical life-time of EPDM based materials that were vulcanized with different crosslinking systems. In this study, effects of TMQ on the thermo-oxidative resistance of EPDM has been studied for conven-tional and efficient sulphur vulcanization systems as well as peroxide vulcanization system. Aging mechanism for different cases has been investigated by using structural, rheological and mechanical tests. Thermo-oxidative aging has been monitored by carbonyl index and activation energy. Arrhenius based life-time estimation methodology has also been employed to evaluate aging behaviour of the reference and TMQ containing (-T) compounds. TMQ was found to exhibit different levels of protection against thermo-oxidative aging for all the curing systems and at all aging conditions. Higher aging activation energy for -T compounds has been attributed to extended service life of the material in the presence of TMQ.

References

  • References
  • Abdel-Aziz, M. M., & Basfar, A. A. (2000). Aging of ethylene-propylene diene rubber (EPDM) vulcanized by γ-radiation. Polymer testing, 19(5), 591-602. https://doi.org/10.1016/S0142-9418(99)00030-6
  • Almond, J., Sugumaar, P., Wenzel, M. N., Hill, G., & Wallis, C. (2020). Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. E-Polymers, 20(1), 369-381. https://doi.org/10.1515/epoly-2020-0041
  • Arvind Mafatlal Group, and Nocil Limited. 2010. Antioxidants & Antidegradants. Retrieved April 10, 2023. https://www.nocil.com/Downloadfile/ETechnicalNote-Antioxidants-Dec2010.pdf
  • Bouguedad, D., Mekhaldi, A., Jbara, O., Rondot, S., Hadjadj, A., Douglade, J., & Dony, P. (2015). Physico-chemical study of thermally aged EPDM used in power cables insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 22(6), 3207-3215. https://doi.org/10.1109/TDEI.2015.005227
  • Bouguedad, D., Mekhaldi, A., Boubakeur, A., & Jbara, O. (2008). Thermal ageing effects on the properties of ethylene-propylene-diene monomer (EPDM). In Annales de chimie (Paris. 1914), Vol. 33, No. 4, pp. 303-313. http://dx.doi.org/10.3166/acsm.33.303-313
  • Celina, M., Gillen, K. T., & Assink, R. A. (2005). Accelerated aging and lifetime prediction: Review of non-Arrhenius behaviour due to two competing processes. Polymer Degradation and stability, 90(3), 395-404. https://doi.org/10.1016/j.polymdegradstab.2005.05.004
  • Ciesielski, A. (1999). An introduction to rubber technology. iSmithers Rapra publishing. De, S. K., & White, J. R. (Eds.). (2001). Rubber technologist's handbook (Vol. 1). iSmithers Rapra Publishing.
  • Delor-Jestin, F., Lacoste, J., Barrois-Oudin, N., Cardinet, C., & Lemaire, J. (2000). Photo-, thermal and natural ageing of ethylene–propylene–diene monomer (EPDM) rubber used in automotive applications. Influence of carbon black, crosslinking and stabilizing agents. Polymer Degradation and Stability, 67(3), 469-477. https://doi.org/10.1016/S0141-3910(99)00147-0
  • Van Duin, M. (2002). Chemistry of EPDM cross-linking. kautschuk gummi kunststoffe, 55(4), 150-150.
  • Hulme, A., & Cooper, J. (2012). Life prediction of polymers for industry. Sealing Technology, 2012(9), 8-12. https://doi.org/10.1016/S1350-4789(12)70398-7
  • Huntink, N. M., Datta, R. N., & Noordermeer, J. W. M. (2004). Addressing durability of rubber compounds. Rubber chemistry and technology, 77(3), 476-511. https://doi.org/10.5254/1.3547833
  • Le Huy, M., & Evrard, G. (1998). Methodologies for lifetime predictions of rubber using Arrhenius and WLF models. Die Angewandte Makromolekulare Chemie, 261(1), 135-142. https://doi.org/10.1002/(SICI)1522-9505(19981201)261-262:1<135::AID-APMC135>3.0.CO;2-W
  • Instruments, T. A. (1999). Thermal analysis application brief. TA-125.
  • Johlitz, M., Diercks, N., & Lion, A. (2014). Thermo-oxidative ageing of elastomers: A modelling approach based on a finite strain theory. International Journal of Plasticity, 63, 138-151. https://doi.org/10.1016/j.ijplas.2014.01.012
  • Khalaf, A. I., Helaly, F. M., & El-Sawy, S. M. (2014). Effect of chitosan derivatives as rubber antioxidants for increasing durability. Research on Chemical Intermediates, 40, 1383-1401. https://doi.org/10.1007/s11164-013-1046-y
  • Li, J., Zhou, C., Cao, D., & Liu, H. (2020). Synergistic Effects of Amine‐Containing Antioxidants on the Aging Performances of Ethylene Propylene Diene Rubber. Chemistry Select, 5(16), 4961-4966. https://doi.org/10.1002/slct.202001279
  • Rubber, M. (2007). Rubber chemistry. Education and calture.
  • Mathew, N. M., & De, S. K. (1983). Thermo-oxidative ageing and its effect on the network structure and fracture mode of natural rubber vulcanizates. Polymer, 24(8), 1042-1054. https://doi.org/10.1016/0032-3861(83)90158-1
  • Nakajima, N. (2000). Science and practice of rubber mixing. iSmithers Rapra Publishing.
  • Ooi, Z. X., Ismail, H., & Bakar, A. A. (2013). A comparative study of aging characteristics and thermal stability of oil palm ash, silica, and carbon black filled natural rubber vulcanizates. Journal of Applied Polymer Science, 130(6), 4474-4481. https://doi.org/10.1002/app.39649
  • Polymer Properties Database. Thermal-Oxidative Degradation Of Rubber. Retrieved October 28, 2020. http://polymerdatabase.com/polymer chemistry/Thermal Degradation Elastomers.html
  • Datta, R. N. (2002). Rubber curing systems (Vol. 12). iSmithers Rapra Publishing.
  • Rojas Rodríguez, F. I., d’Almeida Moraes, J. R., & Marinkovic, B. A. (2021). Natural aging of ethylene-propylene-diene rubber under actual operation conditions of electrical submersible pump cables. Materials, 14(19), 5520. https://doi.org/10.3390/ma14195520
  • Sanches, N. B., Cassu, S. N., & Dutra, R. D. C. L. (2015). TG/FT-IR characterization of additives typically employed in EPDM formulations. Polímeros, 25, 247-255. https://doi.org/10.1590/0104-1428.1819
  • Savran, H. Ö. (2001). Elastomer Teknolojisi - 1. Rubber Society Publications. İstanbul, Türkiye.
  • Simpson, R. B. (Ed.). (2002). Rubber basics. iSmithers Rapra Publishing.
  • Tan, J. H., Chen, C. L., Wu, J. Y., He, R., & Liu, Y. W. (2021). The effect of UV radiation ageing on the structure, mechanical and gas permeability performances of ethylene–propylene–diene rubber. Journal of Polymer Research, 28, 1-10. https://doi.org/10.1007/s10965-021-02447-8
  • Wang, R., He, Y., Wang, Z., Kang, H., Ma, J., & Jin, H. (2020, March). Effect of thermal aging on breakdown strength of EPDM rubber. In IOP Conference Series: Materials Science and Engineering, Vol. 768, No. 6, p. 062091. IOP Publishing. https://doi.org/10.1088/1757-899X/768/6/062091
  • Wang, W., & Qu, B. (2003). Photo-and thermo-oxidative degradation of photocrosslinked ethylene–propylene–diene terpolymer. Polymer degradation and stability, 81(3), 531-537. https://doi.org/10.1016/S0141-3910(03)00154-X
  • Wang, Z. N., Shen, S. L., Zhou, A. N., & Xu, Y. S. (2020). Experimental evaluation of aging characteristics of EPDM as a sealant for undersea shield tunnels. Journal of Materials in Civil Engineering, 32(7), 04020182. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003242
  • Woo, C. S., & Park, H. S. (2011). Useful lifetime prediction of rubber component. Engineering Failure Analysis, 18(7), 1645-1651. https://doi.org/10.1016/j.engfailanal.2011.01.003
  • Yahya, Y. R., Azura, A. R., & Ahmad, Z. (2011). Effect of curing systems on thermal degradation behaviour of natural rubber (SMR CV 60). Journal of Physical Science, 22(2), 1-14.
  • Zhang, X., Li, J., Chen, Z., Pang, C., He, S., & Lin, J. (2022). Study on thermal-oxidative aging properties of ethylene-propylene-diene monomer composites filled with silica and carbon nanotubes. Polymers, 14(6), 1205. https://doi.org/10.3390/polym14061205
Year 2023, Volume: 9 Issue: 4, 938 - 951, 22.12.2023
https://doi.org/10.28979/jarnas.1285817

Abstract

References

  • References
  • Abdel-Aziz, M. M., & Basfar, A. A. (2000). Aging of ethylene-propylene diene rubber (EPDM) vulcanized by γ-radiation. Polymer testing, 19(5), 591-602. https://doi.org/10.1016/S0142-9418(99)00030-6
  • Almond, J., Sugumaar, P., Wenzel, M. N., Hill, G., & Wallis, C. (2020). Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. E-Polymers, 20(1), 369-381. https://doi.org/10.1515/epoly-2020-0041
  • Arvind Mafatlal Group, and Nocil Limited. 2010. Antioxidants & Antidegradants. Retrieved April 10, 2023. https://www.nocil.com/Downloadfile/ETechnicalNote-Antioxidants-Dec2010.pdf
  • Bouguedad, D., Mekhaldi, A., Jbara, O., Rondot, S., Hadjadj, A., Douglade, J., & Dony, P. (2015). Physico-chemical study of thermally aged EPDM used in power cables insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 22(6), 3207-3215. https://doi.org/10.1109/TDEI.2015.005227
  • Bouguedad, D., Mekhaldi, A., Boubakeur, A., & Jbara, O. (2008). Thermal ageing effects on the properties of ethylene-propylene-diene monomer (EPDM). In Annales de chimie (Paris. 1914), Vol. 33, No. 4, pp. 303-313. http://dx.doi.org/10.3166/acsm.33.303-313
  • Celina, M., Gillen, K. T., & Assink, R. A. (2005). Accelerated aging and lifetime prediction: Review of non-Arrhenius behaviour due to two competing processes. Polymer Degradation and stability, 90(3), 395-404. https://doi.org/10.1016/j.polymdegradstab.2005.05.004
  • Ciesielski, A. (1999). An introduction to rubber technology. iSmithers Rapra publishing. De, S. K., & White, J. R. (Eds.). (2001). Rubber technologist's handbook (Vol. 1). iSmithers Rapra Publishing.
  • Delor-Jestin, F., Lacoste, J., Barrois-Oudin, N., Cardinet, C., & Lemaire, J. (2000). Photo-, thermal and natural ageing of ethylene–propylene–diene monomer (EPDM) rubber used in automotive applications. Influence of carbon black, crosslinking and stabilizing agents. Polymer Degradation and Stability, 67(3), 469-477. https://doi.org/10.1016/S0141-3910(99)00147-0
  • Van Duin, M. (2002). Chemistry of EPDM cross-linking. kautschuk gummi kunststoffe, 55(4), 150-150.
  • Hulme, A., & Cooper, J. (2012). Life prediction of polymers for industry. Sealing Technology, 2012(9), 8-12. https://doi.org/10.1016/S1350-4789(12)70398-7
  • Huntink, N. M., Datta, R. N., & Noordermeer, J. W. M. (2004). Addressing durability of rubber compounds. Rubber chemistry and technology, 77(3), 476-511. https://doi.org/10.5254/1.3547833
  • Le Huy, M., & Evrard, G. (1998). Methodologies for lifetime predictions of rubber using Arrhenius and WLF models. Die Angewandte Makromolekulare Chemie, 261(1), 135-142. https://doi.org/10.1002/(SICI)1522-9505(19981201)261-262:1<135::AID-APMC135>3.0.CO;2-W
  • Instruments, T. A. (1999). Thermal analysis application brief. TA-125.
  • Johlitz, M., Diercks, N., & Lion, A. (2014). Thermo-oxidative ageing of elastomers: A modelling approach based on a finite strain theory. International Journal of Plasticity, 63, 138-151. https://doi.org/10.1016/j.ijplas.2014.01.012
  • Khalaf, A. I., Helaly, F. M., & El-Sawy, S. M. (2014). Effect of chitosan derivatives as rubber antioxidants for increasing durability. Research on Chemical Intermediates, 40, 1383-1401. https://doi.org/10.1007/s11164-013-1046-y
  • Li, J., Zhou, C., Cao, D., & Liu, H. (2020). Synergistic Effects of Amine‐Containing Antioxidants on the Aging Performances of Ethylene Propylene Diene Rubber. Chemistry Select, 5(16), 4961-4966. https://doi.org/10.1002/slct.202001279
  • Rubber, M. (2007). Rubber chemistry. Education and calture.
  • Mathew, N. M., & De, S. K. (1983). Thermo-oxidative ageing and its effect on the network structure and fracture mode of natural rubber vulcanizates. Polymer, 24(8), 1042-1054. https://doi.org/10.1016/0032-3861(83)90158-1
  • Nakajima, N. (2000). Science and practice of rubber mixing. iSmithers Rapra Publishing.
  • Ooi, Z. X., Ismail, H., & Bakar, A. A. (2013). A comparative study of aging characteristics and thermal stability of oil palm ash, silica, and carbon black filled natural rubber vulcanizates. Journal of Applied Polymer Science, 130(6), 4474-4481. https://doi.org/10.1002/app.39649
  • Polymer Properties Database. Thermal-Oxidative Degradation Of Rubber. Retrieved October 28, 2020. http://polymerdatabase.com/polymer chemistry/Thermal Degradation Elastomers.html
  • Datta, R. N. (2002). Rubber curing systems (Vol. 12). iSmithers Rapra Publishing.
  • Rojas Rodríguez, F. I., d’Almeida Moraes, J. R., & Marinkovic, B. A. (2021). Natural aging of ethylene-propylene-diene rubber under actual operation conditions of electrical submersible pump cables. Materials, 14(19), 5520. https://doi.org/10.3390/ma14195520
  • Sanches, N. B., Cassu, S. N., & Dutra, R. D. C. L. (2015). TG/FT-IR characterization of additives typically employed in EPDM formulations. Polímeros, 25, 247-255. https://doi.org/10.1590/0104-1428.1819
  • Savran, H. Ö. (2001). Elastomer Teknolojisi - 1. Rubber Society Publications. İstanbul, Türkiye.
  • Simpson, R. B. (Ed.). (2002). Rubber basics. iSmithers Rapra Publishing.
  • Tan, J. H., Chen, C. L., Wu, J. Y., He, R., & Liu, Y. W. (2021). The effect of UV radiation ageing on the structure, mechanical and gas permeability performances of ethylene–propylene–diene rubber. Journal of Polymer Research, 28, 1-10. https://doi.org/10.1007/s10965-021-02447-8
  • Wang, R., He, Y., Wang, Z., Kang, H., Ma, J., & Jin, H. (2020, March). Effect of thermal aging on breakdown strength of EPDM rubber. In IOP Conference Series: Materials Science and Engineering, Vol. 768, No. 6, p. 062091. IOP Publishing. https://doi.org/10.1088/1757-899X/768/6/062091
  • Wang, W., & Qu, B. (2003). Photo-and thermo-oxidative degradation of photocrosslinked ethylene–propylene–diene terpolymer. Polymer degradation and stability, 81(3), 531-537. https://doi.org/10.1016/S0141-3910(03)00154-X
  • Wang, Z. N., Shen, S. L., Zhou, A. N., & Xu, Y. S. (2020). Experimental evaluation of aging characteristics of EPDM as a sealant for undersea shield tunnels. Journal of Materials in Civil Engineering, 32(7), 04020182. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003242
  • Woo, C. S., & Park, H. S. (2011). Useful lifetime prediction of rubber component. Engineering Failure Analysis, 18(7), 1645-1651. https://doi.org/10.1016/j.engfailanal.2011.01.003
  • Yahya, Y. R., Azura, A. R., & Ahmad, Z. (2011). Effect of curing systems on thermal degradation behaviour of natural rubber (SMR CV 60). Journal of Physical Science, 22(2), 1-14.
  • Zhang, X., Li, J., Chen, Z., Pang, C., He, S., & Lin, J. (2022). Study on thermal-oxidative aging properties of ethylene-propylene-diene monomer composites filled with silica and carbon nanotubes. Polymers, 14(6), 1205. https://doi.org/10.3390/polym14061205
There are 34 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Research Article
Authors

Şehriban Öncel 0000-0001-8945-3054

Gürcan Gül 0000-0003-2738-1272

Mahir Burak Efe 0009-0003-6676-4521

Hakan Erdoğan 0009-0000-7731-6861

Bağdagül Karaağaç 0000-0001-8747-8004

Early Pub Date December 8, 2023
Publication Date December 22, 2023
Submission Date April 24, 2023
Published in Issue Year 2023 Volume: 9 Issue: 4

Cite

APA Öncel, Ş., Gül, G., Efe, M. B., Erdoğan, H., et al. (2023). Anti-aging effect of TMQ on EPDM for Various Cure Systems. Journal of Advanced Research in Natural and Applied Sciences, 9(4), 938-951. https://doi.org/10.28979/jarnas.1285817
AMA Öncel Ş, Gül G, Efe MB, Erdoğan H, Karaağaç B. Anti-aging effect of TMQ on EPDM for Various Cure Systems. JARNAS. December 2023;9(4):938-951. doi:10.28979/jarnas.1285817
Chicago Öncel, Şehriban, Gürcan Gül, Mahir Burak Efe, Hakan Erdoğan, and Bağdagül Karaağaç. “Anti-Aging Effect of TMQ on EPDM for Various Cure Systems”. Journal of Advanced Research in Natural and Applied Sciences 9, no. 4 (December 2023): 938-51. https://doi.org/10.28979/jarnas.1285817.
EndNote Öncel Ş, Gül G, Efe MB, Erdoğan H, Karaağaç B (December 1, 2023) Anti-aging effect of TMQ on EPDM for Various Cure Systems. Journal of Advanced Research in Natural and Applied Sciences 9 4 938–951.
IEEE Ş. Öncel, G. Gül, M. B. Efe, H. Erdoğan, and B. Karaağaç, “Anti-aging effect of TMQ on EPDM for Various Cure Systems”, JARNAS, vol. 9, no. 4, pp. 938–951, 2023, doi: 10.28979/jarnas.1285817.
ISNAD Öncel, Şehriban et al. “Anti-Aging Effect of TMQ on EPDM for Various Cure Systems”. Journal of Advanced Research in Natural and Applied Sciences 9/4 (December 2023), 938-951. https://doi.org/10.28979/jarnas.1285817.
JAMA Öncel Ş, Gül G, Efe MB, Erdoğan H, Karaağaç B. Anti-aging effect of TMQ on EPDM for Various Cure Systems. JARNAS. 2023;9:938–951.
MLA Öncel, Şehriban et al. “Anti-Aging Effect of TMQ on EPDM for Various Cure Systems”. Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 4, 2023, pp. 938-51, doi:10.28979/jarnas.1285817.
Vancouver Öncel Ş, Gül G, Efe MB, Erdoğan H, Karaağaç B. Anti-aging effect of TMQ on EPDM for Various Cure Systems. JARNAS. 2023;9(4):938-51.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).