Research Article
BibTex RIS Cite

Üzüm Posasının Karbonizasyon Davranışının İncelenmesi

Year 2024, Volume: 10 Issue: 2, 380 - 398, 25.06.2024
https://doi.org/10.28979/jarnas.1327691

Abstract

Bu çalışmada üzüm posası hem inert hem de oksijenli atmosferlerde karbonizasyon davranışının incelenmesi amaçlanmıştır. Herhangi bir biyokütlenin torrefaksiyon koşullarında oluşturacağı ürünlerin miktarı, öncelikle biyokütlenin temel bileşenlerine bağlıdır. Çünkü temel bileşenlerin yapısal farklılıkları termal davranışlarının da farklı olmasına neden olmaktadır. Bu yüzden meydana gelen değişimlerin ve ortaya çıkan ürünlerin anlaşılması açısından şüphesiz oldukça önemlidir. Lignoselülozik maddelerin yapısında yaklaşık olarak %80 uçucu bileşen ve %20 sabit karbon bulundu. Karbonizasyon prosesi boyunca biyokütlenin elementsel oksijen oranı sıcaklıkla önemli oranda azaldı. 200-350˚C aralığında uçucu bileşenlerin bir kısmı biyokütleden ayrıldı ve böylece biyokütlenin yapısı daha sert ve kırılgan bir hale geldi. Büyük oranda hemiselülozların bozunması ve daha az oranda selüloz moleküllerinin bozunması suretiyle orijinal biyokütlenin fiber yapısı parçalandı. Bu durum biyokütle yapısının daha kırılgan bir hale gelmesine ve daha kolay öğütülmesine yardımcı olmaktadır. Uçucu bileşenler uzaklaştırıldıktan sonra biyokütlenin elementsel oksijen oranı azaldı ve buna bağlı olarak ısı değeri kademeli olarak 19 MJ. kg-1 den 21- 23 MJ. kg-1 değerine yükseldi.

References

  • W. Yan, T. C. Acharjee, C. J. Coronella, V. R. Vasquez, Thermal pretreatment of lignocellulosic biomass, Environmental Progress & Sustainable Energy 28 (3) (2009) 435–440.
  • F. F. Felfli, C. A. Luengo, J. A. Suárez, P. A. Beatón, Wood briquette torrefaction, Energy for Sustainable Development 9 (3) (2005) 19–22.
  • R. Harun, M. K. Danquah, G. M. Forde, Microalgal biomass as a fermentation feedstock for bioethanol production, Journal of Chemical Technology & Biotechnology 85 (2) (2010) 199–203.
  • W.-H. Chen, Y.-J. Tu, H.-K. Sheen, Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production, International Journal of Energy Research 34 (3) (2010) 265–274.
  • W.-H. Chen, J.-C. Chen, C.-D. Tsai, T. L. Jiang, Transient gasification and syngas formation from coal particles in a fixed‐bed reactor, International Journal of Energy Research 31 (9) (2007) 895–911.
  • Y. Uemura, W. N. Omar, T. Tsutsui, S. B. Yusup, Torrefaction of oil palm wastes, Fuel 90 (8) (2011) 2585–2591.
  • S. Ren, H. Lei, L. Wang, Q. Bu, S. Chen, J. Wu, J. Julson, R. Ruan, The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating, Bioresource Technology 135 (2013) 659– 664.
  • W. Chaiwat, I. Hasegawa, J. Kori, K. Mae, Examination of degree of cross-linking for cellulose precursors pretreated with acid/hot water at low temperature, Industrial & Engineering Chemistry Research 47 (16) (2008) 5948–5956.
  • V. Repellin, A. Govin, M. Rolland, R. Guyonnet, Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln, Biomass and Bioenergy 34 (5) (2010) 602–609.
  • M. M. Küçük, A. Demirbaş, Biomass conversion processes, Energy Conversion and Management 38 (2) (1997) 151–165.
  • R. C. Saxena, D. K. Adhikari, H. B. Goyal, Biomass-based energy fuel through biochemical routes: A review, Renewable and Sustainable Energy Reviews 13 (1) (2009) 167–178.
  • L. Jiménez, F. González, Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels, Fuel 70 (8) (1991) 947–950.
  • S. Andrews, S. Aschmann, Conservation issue brief resource effects of biomass energy production. II. UNCCD, (2005), http://www.unccd.int/cop/reports/northmed/national/2002/.
  • A. G. Dumanlı, İ. Gulyurtlu, Y. Yürüm, Fuel supply chain analysis of Turkey, Renewable and Sustainable Energy Reviews 11 (9) (2007) 2058–2082.
  • H. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86 (12-13) (2007) 1781–1788.
  • A. Uslu, A. P. C. Faaij, P. C. A. Bergman, Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation, Energy 33 (8) (2008) 1206–1223.
  • P. McKendry, Energy production from biomass (part 1): Overview of biomass, Bioresource Technology 83 (1) (2002) 37–46.
  • A. Demirbaş, Biomass resource facilities and biomass conversion processing for fuels and chemicals, Energy Conversion and Management 42 (11) (2001) 1357–1378.
  • A. Çağlar, A. Demirbaş, Conversion of cotton cocoon shell to liquid products by supercritical fluid extraction and low pressure pyrolysis in the presence of alkalis, Energy Conversion and Management 42 (9) (2001) 1095–1104.
  • J. M. Encinar, F. J. Beltran, A. Ramiro, J. F. Gonzalez, Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: Influence of variables, Fuel Processing Technology 55 (3) (1998) 219–233.
  • W.-H. Chen, P.-C. Kuo, A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry, Energy, 35 (2010) 2580–2586.
  • P. Rousset, L. Macedo, J. M. Commandré, A. Moreira, Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product, Journal of Analytical and Applied Pyrolysis 96 (2012) 86–91.
  • P. Basu, A. K. Sadhukhan, P. Gupta, S. Rao, A. Dhungana, B. Acharya, An experimental and theoretical investigation on torrefaction of a large wet wood particle, Bioresource Technology 159 (2014) 215–222.
  • S. K. Satpathy, L. G. Tabil, V. Meda, S. N. Naik, R. Prasad, Torrefaction of wheat and barley straw after microwave heating, Fuel 124 (2014) 269–278.
  • Q. V. Bach, Ø. Skreiberg, Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction, Renewable and Sustainable Energy Reviews 54 (2016) 665–677.
  • Y.-C. Chen, W.-H. Chen, B.-J. Lin, J.-S. Chang, H. C. Ong, Fuel property variation of biomass undergoing torrefaction, Energy Procedia 105 (2017) 108–112.
  • W.-H. Chen, M.-Y. Huang, J.-S. Chang, C.-Y. Chen, W.-J. Lee, An energy analysis of torrefaction for upgrading microalga residue as a solid fuel, Bioresource Technology 185 (2015) 285–293.
  • M. A. Martín-Lara, A. Ronda, M. C. Zamora, M. Calero, Torrefaction of olive tree pruning: effect of operating conditions on solid product properties, Fuel 202 (2017) 109–117.

Investigation of Carbonization Behavior of Grape Pulp

Year 2024, Volume: 10 Issue: 2, 380 - 398, 25.06.2024
https://doi.org/10.28979/jarnas.1327691

Abstract

In this study, it was aimed to examine the carbonization behavior of grape pulp in both inert and oxygenated atmospheres. The number of products that any biomass will form under torrefaction conditions depending primarily on the basic components of the biomass because the structural differences of the basic components cause their thermal behavior to be different. Therefore, it is undoubtedly important to understand the changes that occur and the resulting products. Approximately 80% volatile components and 20% fixed carbon were found in the structure of lignocellulosic materials. During the carbonization process, the elemental oxygen content of the biomass decreased significantly with temperature. In the range of 200-350˚C, some of the volatile components separated from the biomass and thus the structure of the biomass became harder and more brittle. The fiber structure of the original biomass was broken down, largely by degradation of hemicelluloses and to a lesser extent by degradation of cellulose molecules. This helps the biomass structure become more fragile and grind more easily. After the volatile components were removed, the elemental oxygen content of the biomass decreased and accordingly the heat value gradually increased to 19 MJ. 21- 23 MJ from kg-1. increased to kg-1 values.

References

  • W. Yan, T. C. Acharjee, C. J. Coronella, V. R. Vasquez, Thermal pretreatment of lignocellulosic biomass, Environmental Progress & Sustainable Energy 28 (3) (2009) 435–440.
  • F. F. Felfli, C. A. Luengo, J. A. Suárez, P. A. Beatón, Wood briquette torrefaction, Energy for Sustainable Development 9 (3) (2005) 19–22.
  • R. Harun, M. K. Danquah, G. M. Forde, Microalgal biomass as a fermentation feedstock for bioethanol production, Journal of Chemical Technology & Biotechnology 85 (2) (2010) 199–203.
  • W.-H. Chen, Y.-J. Tu, H.-K. Sheen, Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production, International Journal of Energy Research 34 (3) (2010) 265–274.
  • W.-H. Chen, J.-C. Chen, C.-D. Tsai, T. L. Jiang, Transient gasification and syngas formation from coal particles in a fixed‐bed reactor, International Journal of Energy Research 31 (9) (2007) 895–911.
  • Y. Uemura, W. N. Omar, T. Tsutsui, S. B. Yusup, Torrefaction of oil palm wastes, Fuel 90 (8) (2011) 2585–2591.
  • S. Ren, H. Lei, L. Wang, Q. Bu, S. Chen, J. Wu, J. Julson, R. Ruan, The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating, Bioresource Technology 135 (2013) 659– 664.
  • W. Chaiwat, I. Hasegawa, J. Kori, K. Mae, Examination of degree of cross-linking for cellulose precursors pretreated with acid/hot water at low temperature, Industrial & Engineering Chemistry Research 47 (16) (2008) 5948–5956.
  • V. Repellin, A. Govin, M. Rolland, R. Guyonnet, Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln, Biomass and Bioenergy 34 (5) (2010) 602–609.
  • M. M. Küçük, A. Demirbaş, Biomass conversion processes, Energy Conversion and Management 38 (2) (1997) 151–165.
  • R. C. Saxena, D. K. Adhikari, H. B. Goyal, Biomass-based energy fuel through biochemical routes: A review, Renewable and Sustainable Energy Reviews 13 (1) (2009) 167–178.
  • L. Jiménez, F. González, Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels, Fuel 70 (8) (1991) 947–950.
  • S. Andrews, S. Aschmann, Conservation issue brief resource effects of biomass energy production. II. UNCCD, (2005), http://www.unccd.int/cop/reports/northmed/national/2002/.
  • A. G. Dumanlı, İ. Gulyurtlu, Y. Yürüm, Fuel supply chain analysis of Turkey, Renewable and Sustainable Energy Reviews 11 (9) (2007) 2058–2082.
  • H. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86 (12-13) (2007) 1781–1788.
  • A. Uslu, A. P. C. Faaij, P. C. A. Bergman, Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation, Energy 33 (8) (2008) 1206–1223.
  • P. McKendry, Energy production from biomass (part 1): Overview of biomass, Bioresource Technology 83 (1) (2002) 37–46.
  • A. Demirbaş, Biomass resource facilities and biomass conversion processing for fuels and chemicals, Energy Conversion and Management 42 (11) (2001) 1357–1378.
  • A. Çağlar, A. Demirbaş, Conversion of cotton cocoon shell to liquid products by supercritical fluid extraction and low pressure pyrolysis in the presence of alkalis, Energy Conversion and Management 42 (9) (2001) 1095–1104.
  • J. M. Encinar, F. J. Beltran, A. Ramiro, J. F. Gonzalez, Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: Influence of variables, Fuel Processing Technology 55 (3) (1998) 219–233.
  • W.-H. Chen, P.-C. Kuo, A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry, Energy, 35 (2010) 2580–2586.
  • P. Rousset, L. Macedo, J. M. Commandré, A. Moreira, Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product, Journal of Analytical and Applied Pyrolysis 96 (2012) 86–91.
  • P. Basu, A. K. Sadhukhan, P. Gupta, S. Rao, A. Dhungana, B. Acharya, An experimental and theoretical investigation on torrefaction of a large wet wood particle, Bioresource Technology 159 (2014) 215–222.
  • S. K. Satpathy, L. G. Tabil, V. Meda, S. N. Naik, R. Prasad, Torrefaction of wheat and barley straw after microwave heating, Fuel 124 (2014) 269–278.
  • Q. V. Bach, Ø. Skreiberg, Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction, Renewable and Sustainable Energy Reviews 54 (2016) 665–677.
  • Y.-C. Chen, W.-H. Chen, B.-J. Lin, J.-S. Chang, H. C. Ong, Fuel property variation of biomass undergoing torrefaction, Energy Procedia 105 (2017) 108–112.
  • W.-H. Chen, M.-Y. Huang, J.-S. Chang, C.-Y. Chen, W.-J. Lee, An energy analysis of torrefaction for upgrading microalga residue as a solid fuel, Bioresource Technology 185 (2015) 285–293.
  • M. A. Martín-Lara, A. Ronda, M. C. Zamora, M. Calero, Torrefaction of olive tree pruning: effect of operating conditions on solid product properties, Fuel 202 (2017) 109–117.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Feride Naime Türk 0000-0003-3780-7804

Early Pub Date June 25, 2024
Publication Date June 25, 2024
Submission Date July 14, 2023
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Türk, F. N. (2024). Üzüm Posasının Karbonizasyon Davranışının İncelenmesi. Journal of Advanced Research in Natural and Applied Sciences, 10(2), 380-398. https://doi.org/10.28979/jarnas.1327691
AMA Türk FN. Üzüm Posasının Karbonizasyon Davranışının İncelenmesi. JARNAS. June 2024;10(2):380-398. doi:10.28979/jarnas.1327691
Chicago Türk, Feride Naime. “Üzüm Posasının Karbonizasyon Davranışının İncelenmesi”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 2 (June 2024): 380-98. https://doi.org/10.28979/jarnas.1327691.
EndNote Türk FN (June 1, 2024) Üzüm Posasının Karbonizasyon Davranışının İncelenmesi. Journal of Advanced Research in Natural and Applied Sciences 10 2 380–398.
IEEE F. N. Türk, “Üzüm Posasının Karbonizasyon Davranışının İncelenmesi”, JARNAS, vol. 10, no. 2, pp. 380–398, 2024, doi: 10.28979/jarnas.1327691.
ISNAD Türk, Feride Naime. “Üzüm Posasının Karbonizasyon Davranışının İncelenmesi”. Journal of Advanced Research in Natural and Applied Sciences 10/2 (June 2024), 380-398. https://doi.org/10.28979/jarnas.1327691.
JAMA Türk FN. Üzüm Posasının Karbonizasyon Davranışının İncelenmesi. JARNAS. 2024;10:380–398.
MLA Türk, Feride Naime. “Üzüm Posasının Karbonizasyon Davranışının İncelenmesi”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 2, 2024, pp. 380-98, doi:10.28979/jarnas.1327691.
Vancouver Türk FN. Üzüm Posasının Karbonizasyon Davranışının İncelenmesi. JARNAS. 2024;10(2):380-98.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                            

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).