Research Article
BibTex RIS Cite

Uncovering the Hydrocracking Efficiency of Iron-Based Catalysts: A Novel Approach to Asphaltene Transformation in Iranian Heavy Oil

Year 2024, Volume: 10 Issue: 2, 243 - 251, 25.06.2024
https://doi.org/10.28979/jarnas.1381226

Abstract

In the quest for optimal asphaltene conversion, this study investigated a range of cost-effective and easily accessible catalyst precursors, targeting both high yields of lighter products and minimal coke formation. The hydrocracking experiments were conducted within a 10 ml bomb-type reactor equipped with a reciprocating stirrer operating at a reciprocation rate of 200 times per minute. The experiments were performed at a temperature of 425°C for a duration of 90 minutes, with an initial hydrogen pressure of 100 bar. The outcomes of each experiment were assessed in terms of liquid products, coke production and C5- gas products. To analyze the Iranian heavy asphaltene, Nuclear Magnetic Resonance (1H NMR), Gel Permeation Chromatography (GPC) and elemental analysis were employed. Gas products were characterized using Gas Chromatography (GC). The investigation aimed to identify the catalyst precursor mixture that would maximize asphaltene conversion while minimizing coke production. A series of catalyst precursors, encompassing FeSO4·H2O, its binary mixtures with metal oxides (Fe2O3, Al2O3, CaO, SiO2), and combinations of Fe2O3, Al2O3, and SiO2 with elemental sulfur, were evaluated. The experimental results demonstrated that the toluene-soluble fraction (TSF), which includes the middle distillate portion, could be increased to a maximum of 56% while concurrently reducing the coke yield to 19%, down from the initial 36.9% when no precursor was used.

Supporting Institution

İÜC BAP

Project Number

22746

References

  • A. Kitous, Z. Vrontisi, B. Saveyn, T. Vandyck, Impact of low oil prices on the EU economy, JRC Technical Reports (2015) EUR 27537 EN.
  • A. Marafi, H. Albazzaz, M. S. Rana, Hydroprocessing of heavy residual oil: Opportunities and challenges, Catalysis Today 329 (2019) 125–134.
  • M. T. Nguyen, D. L. T. Nguyen, C. Xia, T. B. Nguyen, M. Shokouhimehr, S. S. Sana, A. N. Grace, M. Aghbashlo, M. Tabatabaei, C. Sonne, S. Y. Kim, S. S. Lam, Q. V. Le, Recent advances in asphaltene transformation in heavy oil hydroprocessing: Progress, challenges, and future perspectives, Fuel Processing Technology 213 (2021) 106681.
  • M. Yasar, D. M. Trauth, M. T. Klein, Asphaltene and resid pyrolysis. 2. The effect of reaction environment on pathways and selectivities, Energy & Fuels 15 (2001) 504–509.
  • M. L. Chacón-Patiño, C. Blanco-Tirado, J. A. Orrego-Ruiz, A. Gómez-Escudero, M. Y. Combariza, Tracing the compositional changes of asphaltenes after hydroconversion and thermal cracking processes by high-resolution mass spectrometry, Energy & Fuels 29 (10) (2015) 6330–6341.
  • Y. Zhao, Y. Yu, Kinetics of asphaltene thermal cracking and catalytic hydrocracking, Fuel Processing Technology 92 (2010) 977–982.
  • M. A. Suwaid, M. A. Varfolomeev, A. A. Al-Muntaser, C. Yuan, V. L. Starshinova, A. Zinnatullin, F. G. Vagizov, I. Z. Rakhmatullin, D. A. Emelianov, A. E. Chemodanov, In-situ catalytic upgrading of heavy oil using oil-soluble transition metal-based catalysts, Fuel 281 (2020) 118753.
  • H. Yang, H. Yang, X. Yan, Low-Temperature oxidation of heavy oil asphaltene with and without catalyst, Molecules 27 (2022) 7075.
  • T. A. Al-Attas, S. A. Ali, M. H. Zahir, Q. G. Xiong, S. A. AlBogami, Z. O. Malaibari, S. A. Razzak, M. M. Hossain, Recent advances in heavy oil upgrading using dispersed catalysts, Energy Fuels 33 (9) (2019) 7917−7949.
  • S. Zhang, D. Liu, W. Deng, G. Que, A review of slurry-phase hydrocracking heavy oil technology, Energy & Fuels 21 (6) (2007) 3057–3062.
  • M. A. Suwaid, M. A. Varfolomeev, A. A. Al-Muntaser, N. I. Abdaljalil, R. Djimasbe, N. O. Rodionov, A. Zinnatullin, F. G. Vagizov, Using the oil-soluble copper-based catalysts with different organic ligands for in-situ catalytic upgrading of heavy oil, Fuel 312 (2022) 12291.
  • C. T. Tye, Catalysts for hydroprocessing of heavy oils and petroleum residues, in: R. M. Gounder (Ed.), Processing of Heavy Crude Oils - Challenges and Opportunities, IntechOpen, 2019, Ch. 13.
  • R. Sahu, B. J. Song, J. S. Im, Y. P. Jeon, C. W. Lee, A review of recent advances in catalytic hydrocracking of heavy residues, Journal of Industrial and Engineering Chemistry 27 (2015) 12–24.
  • A. V. Vakhin, M. A. Khelkhal, A. L. Maksimov, Special Issue “Heavy Oil In Situ Upgrading and Catalysis”, Catalysts 13 (1) (2023) 99.
  • A. N. Mikhailova, A. A. Al-Muntaser, M. A. Suwaid, R. R. Zairov, I. T. Kadhim, R. Djimasbe, A. Dovzhenko, I. A. Bezkishko, A. Zinnatullin, D. A. Emelianov, R. S. Umarkulyevna, F. G. Vagizov, C. Yuan, M. A. Varfolomeev, Ferrocene-based catalysts for in-situ hydrothermal upgrading of heavy crude oil: Synthesis and application, Fuel 348 (2023) 128585.
  • H. Fukuyama, S. Terai, An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue, Petroleum Science and Technology 25 (1-2) (2007) 231–240.
  • E. Bjambajav, Y. Ohtsuka, Hydrocracking of asphaltene with metal catalysts supported on SBA-15, Applied Catalysis A: General 252 (1) (2003) 193–204.
  • S. A. Sitnov, I. I. Mukhamatdinov, D. A. Feoktistov, Y. V. Onishchenko, V. A. Sudakov, M. I. Amerkhanov, A. V. Vakhin, Underground upgrading of the heavy crude oil in content-saturated sandstone with aquathermolysis in the presence of an iron based catalyst, Catalysts 11 (2021) 1255.
Year 2024, Volume: 10 Issue: 2, 243 - 251, 25.06.2024
https://doi.org/10.28979/jarnas.1381226

Abstract

Project Number

22746

References

  • A. Kitous, Z. Vrontisi, B. Saveyn, T. Vandyck, Impact of low oil prices on the EU economy, JRC Technical Reports (2015) EUR 27537 EN.
  • A. Marafi, H. Albazzaz, M. S. Rana, Hydroprocessing of heavy residual oil: Opportunities and challenges, Catalysis Today 329 (2019) 125–134.
  • M. T. Nguyen, D. L. T. Nguyen, C. Xia, T. B. Nguyen, M. Shokouhimehr, S. S. Sana, A. N. Grace, M. Aghbashlo, M. Tabatabaei, C. Sonne, S. Y. Kim, S. S. Lam, Q. V. Le, Recent advances in asphaltene transformation in heavy oil hydroprocessing: Progress, challenges, and future perspectives, Fuel Processing Technology 213 (2021) 106681.
  • M. Yasar, D. M. Trauth, M. T. Klein, Asphaltene and resid pyrolysis. 2. The effect of reaction environment on pathways and selectivities, Energy & Fuels 15 (2001) 504–509.
  • M. L. Chacón-Patiño, C. Blanco-Tirado, J. A. Orrego-Ruiz, A. Gómez-Escudero, M. Y. Combariza, Tracing the compositional changes of asphaltenes after hydroconversion and thermal cracking processes by high-resolution mass spectrometry, Energy & Fuels 29 (10) (2015) 6330–6341.
  • Y. Zhao, Y. Yu, Kinetics of asphaltene thermal cracking and catalytic hydrocracking, Fuel Processing Technology 92 (2010) 977–982.
  • M. A. Suwaid, M. A. Varfolomeev, A. A. Al-Muntaser, C. Yuan, V. L. Starshinova, A. Zinnatullin, F. G. Vagizov, I. Z. Rakhmatullin, D. A. Emelianov, A. E. Chemodanov, In-situ catalytic upgrading of heavy oil using oil-soluble transition metal-based catalysts, Fuel 281 (2020) 118753.
  • H. Yang, H. Yang, X. Yan, Low-Temperature oxidation of heavy oil asphaltene with and without catalyst, Molecules 27 (2022) 7075.
  • T. A. Al-Attas, S. A. Ali, M. H. Zahir, Q. G. Xiong, S. A. AlBogami, Z. O. Malaibari, S. A. Razzak, M. M. Hossain, Recent advances in heavy oil upgrading using dispersed catalysts, Energy Fuels 33 (9) (2019) 7917−7949.
  • S. Zhang, D. Liu, W. Deng, G. Que, A review of slurry-phase hydrocracking heavy oil technology, Energy & Fuels 21 (6) (2007) 3057–3062.
  • M. A. Suwaid, M. A. Varfolomeev, A. A. Al-Muntaser, N. I. Abdaljalil, R. Djimasbe, N. O. Rodionov, A. Zinnatullin, F. G. Vagizov, Using the oil-soluble copper-based catalysts with different organic ligands for in-situ catalytic upgrading of heavy oil, Fuel 312 (2022) 12291.
  • C. T. Tye, Catalysts for hydroprocessing of heavy oils and petroleum residues, in: R. M. Gounder (Ed.), Processing of Heavy Crude Oils - Challenges and Opportunities, IntechOpen, 2019, Ch. 13.
  • R. Sahu, B. J. Song, J. S. Im, Y. P. Jeon, C. W. Lee, A review of recent advances in catalytic hydrocracking of heavy residues, Journal of Industrial and Engineering Chemistry 27 (2015) 12–24.
  • A. V. Vakhin, M. A. Khelkhal, A. L. Maksimov, Special Issue “Heavy Oil In Situ Upgrading and Catalysis”, Catalysts 13 (1) (2023) 99.
  • A. N. Mikhailova, A. A. Al-Muntaser, M. A. Suwaid, R. R. Zairov, I. T. Kadhim, R. Djimasbe, A. Dovzhenko, I. A. Bezkishko, A. Zinnatullin, D. A. Emelianov, R. S. Umarkulyevna, F. G. Vagizov, C. Yuan, M. A. Varfolomeev, Ferrocene-based catalysts for in-situ hydrothermal upgrading of heavy crude oil: Synthesis and application, Fuel 348 (2023) 128585.
  • H. Fukuyama, S. Terai, An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue, Petroleum Science and Technology 25 (1-2) (2007) 231–240.
  • E. Bjambajav, Y. Ohtsuka, Hydrocracking of asphaltene with metal catalysts supported on SBA-15, Applied Catalysis A: General 252 (1) (2003) 193–204.
  • S. A. Sitnov, I. I. Mukhamatdinov, D. A. Feoktistov, Y. V. Onishchenko, V. A. Sudakov, M. I. Amerkhanov, A. V. Vakhin, Underground upgrading of the heavy crude oil in content-saturated sandstone with aquathermolysis in the presence of an iron based catalyst, Catalysts 11 (2021) 1255.
There are 18 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Kadir Yılmaz 0000-0003-0275-0916

Savaş Gürdal 0000-0002-1149-4371

Muzaffer Yaşar 0000-0001-5877-8008

Project Number 22746
Early Pub Date June 25, 2024
Publication Date June 25, 2024
Submission Date October 25, 2023
Acceptance Date November 13, 2023
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Yılmaz, K., Gürdal, S., & Yaşar, M. (2024). Uncovering the Hydrocracking Efficiency of Iron-Based Catalysts: A Novel Approach to Asphaltene Transformation in Iranian Heavy Oil. Journal of Advanced Research in Natural and Applied Sciences, 10(2), 243-251. https://doi.org/10.28979/jarnas.1381226
AMA Yılmaz K, Gürdal S, Yaşar M. Uncovering the Hydrocracking Efficiency of Iron-Based Catalysts: A Novel Approach to Asphaltene Transformation in Iranian Heavy Oil. JARNAS. June 2024;10(2):243-251. doi:10.28979/jarnas.1381226
Chicago Yılmaz, Kadir, Savaş Gürdal, and Muzaffer Yaşar. “Uncovering the Hydrocracking Efficiency of Iron-Based Catalysts: A Novel Approach to Asphaltene Transformation in Iranian Heavy Oil”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 2 (June 2024): 243-51. https://doi.org/10.28979/jarnas.1381226.
EndNote Yılmaz K, Gürdal S, Yaşar M (June 1, 2024) Uncovering the Hydrocracking Efficiency of Iron-Based Catalysts: A Novel Approach to Asphaltene Transformation in Iranian Heavy Oil. Journal of Advanced Research in Natural and Applied Sciences 10 2 243–251.
IEEE K. Yılmaz, S. Gürdal, and M. Yaşar, “Uncovering the Hydrocracking Efficiency of Iron-Based Catalysts: A Novel Approach to Asphaltene Transformation in Iranian Heavy Oil”, JARNAS, vol. 10, no. 2, pp. 243–251, 2024, doi: 10.28979/jarnas.1381226.
ISNAD Yılmaz, Kadir et al. “Uncovering the Hydrocracking Efficiency of Iron-Based Catalysts: A Novel Approach to Asphaltene Transformation in Iranian Heavy Oil”. Journal of Advanced Research in Natural and Applied Sciences 10/2 (June 2024), 243-251. https://doi.org/10.28979/jarnas.1381226.
JAMA Yılmaz K, Gürdal S, Yaşar M. Uncovering the Hydrocracking Efficiency of Iron-Based Catalysts: A Novel Approach to Asphaltene Transformation in Iranian Heavy Oil. JARNAS. 2024;10:243–251.
MLA Yılmaz, Kadir et al. “Uncovering the Hydrocracking Efficiency of Iron-Based Catalysts: A Novel Approach to Asphaltene Transformation in Iranian Heavy Oil”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 2, 2024, pp. 243-51, doi:10.28979/jarnas.1381226.
Vancouver Yılmaz K, Gürdal S, Yaşar M. Uncovering the Hydrocracking Efficiency of Iron-Based Catalysts: A Novel Approach to Asphaltene Transformation in Iranian Heavy Oil. JARNAS. 2024;10(2):243-51.


TR Dizin 20466


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).