Research Article
BibTex RIS Cite

Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys

Year 2024, Volume: 10 Issue: 2, 399 - 414, 25.06.2024
https://doi.org/10.28979/jarnas.1404836

Abstract

Carbon dioxide (CO2) is the most important greenhouse gas that causes global warming. It is crucial to remove CO2 from the atmosphere to combat climate change. It is believed that seawater could be a potential source for capturing CO2, especially from ship chimneys and potentially high-concentration CO2 emissions in coastal regions. In this study, the CO2 absorption performance of sodium chloride (NaCl) solution as seawater, was investigated. The first phase of experiments was performed in a stirred cell at 91 kPa and 20°C. The total CO2 absorption capacity (molCO2L-1 solution) and dissolution rate (mols-1) of the solutions were determined by the pressure drop values occurring inside the cell. The experiments were conducted by preparing NaCl solutions at different concentrations (0-3.5 wt%). Additionally, 0.4% by volume calcium oxide (CaO) solution was added to NaCl solutions at different concentrations and its contribution to CO2 absorption was examined. It was observed that there was a decrease in CO2 absorption performance with the increase in salinity. However, it was determined that the addition of CaO to the NaCl solution had a positive effect on CO2 absorption performance and increased the total CO2 absorption capacity by 66%. The second phase of experiments was carried out in a falling film column. In these experiments, the liquid side individual physical mass transfer coefficients (kL0) were determined by the oxygen (O2) desorption method for pure water and 3.5 wt% NaCl solution. Also, nonlinear regression analyses were performed, and correlations were developed for mass transfer coefficients.

Project Number

-

References

  • IPCC, Climate Change 2022: Impacts, Adaptation and Vulnerability, in: H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds.), Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Switzerland, 2022, 35 pages.
  • IPCC, Global Warming of 1.5°C, in: Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (Eds.) Intergovernmental Panel on Climate Change, Switzerland, 2018, pp. 541–562.
  • H. Öztan, İ. Koçyiğit Çapoğlu, D. Uysal, Ö. M. Doğan, A parametric study to optimize the temperature of hazelnut and walnut shell gasification for hydrogen and methane production, Bioresource Technology Reports 23 (2023) 101581.
  • Ö. Yörük, D. Uysal Zıraman, B. Z. Uysal, Absorption of sulfur dioxide by iron(ii) hydroxide solution in a multiplate bubble column under magnetic field, Chemical Engineering & Technology 44 (1) (2021) 1336–1342.
  • Y. Yagizatli, B. Ulas, A. Sahin, İ. Ar, Investigation of sulfonation reaction kinetics and effect of sulfonation degree on membrane characteristics for PEMFC performance, Ionics 28 (5) (2022) 2323–2336.
  • R. Baumler, M. C. Arce, A. Pazaver, Quantification of influence and interest at IMO in Maritime Safety and Human Element matters, Marine Policy 133 (2021) 104746 12 pages.
  • H. Al Baroudi, A. Awoyomi, K. Patchigolla, K. Jonnalagadda, E. J. Anthony, A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage, Applied Energy 287 (2021) 116510 42 pages.
  • Z. Zhang, D. Huisingh, Carbon dioxide storage schemes: Technology, assessment and deployment, Journal of Cleaner Production 142 (2) (2017) 1055–1064.
  • A. A. Olajire, CO2 capture and separation technologies for end-of-pipe applications–A review, Energy 35 (6) (2010) 2610–2628.
  • J. Buckingham, T. R. Reina, M. S. Duyar, Recent advances in carbon dioxide capture for process intensification, Carbon Capture Science & Technology 2 (95) (2022) 100031 19 pages.
  • F. O. Ochedi, J. Yu, H. Yu, Y. Liu, A. Hussain, Carbon dioxide capture using liquid absorption methods: a review, Environmental Chemistry Letters 19 (2021) 77–109.
  • S. Ahn, H. J. Song, J. W. Park, J. H. Lee, I. Y. Lee, K. R. Jang, Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2, Korean Journal of Chemical Engineering, 27 (5) (2010) 1576–1580.
  • I. M. Bernhardsen, H. K. Knuutila, A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa, International Journal of Greenhouse Gas Control 61 (2017) 27–48.
  • M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption: A state-of-art review, Chemical Engineering Research and Design 89 (9) (2011) 1609–1624.
  • D. Uysal, Ö. M. Dogan, B. Z. Uysal, Kinetics of absorption of carbon dioxide into sodium metaborate solution, International Journal of Chemical Kinetics 49 (6) (2017) 377–386.
  • G. Genç Çelikçi, D. Uysal, B. Z. Uysal, Absorption of carbon dioxide into n-butanol and ethyl acetate in a column with structured packing, Chemical Engineering & Technology 45 (8) (2022) 1489–1496.
  • H. Li, Z. Tang, N. Li, L. Cui, X-Z. Mao, Mechanism and process study on steel slag enhancement for CO2 capture by seawater, Applied Energy 276 (2020) 115515 14 pages.
  • M. H. El-Naas, A. H. Al-Marzouqi, O. Chaalal, A combined approach for the management of desalination reject brine and capture of CO2, Desalination 251 (1-3) (2010) 70–74.
  • W. Wang, M. Hu, Y. Zheng, P. Wang, C. Ma, CO2 fixation in Ca2+-/Mg2+-rich aqueous solutions through enhanced carbonate precipitation, Industrial & Engineering Chemistry Research 50 (13) (2011) 8333–8339.
  • W. Wang, X. Liu, P. Wang, Y. Zheng, M. Wang, Enhancement of CO2 Mineralization in Ca2+-/Mg2+-rich aqueous solutions using insoluble amine, Industrial & Engineering Chemistry Research 52 (23) (2013) 8028–8033.
  • A. Said, H. -P. Mattila, M. Järvinen, R. Zevenhoven, Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2, Applied Energy 112 (2013) 765–771.
  • A. Said, T. Laukkanen, M. Järvinen, Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag, Applied Energy 177 (1) (2016) 602–611.
  • L. Kucka, J. Richter, E. Y. Kenig, A. Górak, Determination of gas–liquid reaction kinetics with a stirred cell reactor, Separation & Purification Technology 31 (2) (2003) 163–175.
  • J. Ying, D. A Eimer. Determination and measurements of mass transfer kinetics of co2 in concentrated aqueous monoethanolamine solutions by a stirred cell, Industrial & Engineering Chemistry Research 52 (7) (2013) 2548–2559.
  • J. M. Smith, H. C. Van Ness, M. M. Abbott, M. T. Swihart, Introduction to chemical engineering thermodynamics, Mc Graw-Hill, New York, 2022.
  • S. I. Sandler, Chemical, biochemical and engineering thermodynamics, 4th Edition, John Wiley & Sons Inc., New York, 2006.
  • G. Genç Çelikçi, Carbon dioxide capture in structured packing column with n-butanol and ethyl acetate, Doctoral Dissertation Gazi University (2020) Ankara.
  • D. Uysal, Absorption of carbon dioxide into calcium acetate solution, Doctoral Dissertation Gazi University (2016) Ankara.
  • A. H. G. Cents, F. T. de Brujin, D. W. F. Brilman, G. F. Versteeg, Validation of the Danckwerts-plot technique by simultaneous chemical absorption of CO2 and physical desorption of O2, Chemical Engineering Science 60 (21) (2005) 5809–5818.
  • A. Hoffmann, J. Maćkowiak, A. Gorak, M. Haas, J. M. Löning, T. Runowski, K. Hallenberger, Standardization of mass transfer measurements: a basis for the description of absorption processes, Chemical Engineering Research & Design 85 (1) (2007) 40–49.
  • C. D. Park, T. Nosoko, Three-dimensional wave dynamics on a falling film and associated mass transfer, AIChe Journal 49 (11) (2003) 2715–2727.
  • C. Wang, Z. Xu, C. Lai, X. Sun, Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column, Chemical Engineering Science 184 (2018) 103–110.
  • B. Z. Uysal, Mass transfer-fundamentals and applications (in Turkish), 3th Edition, Gazi Kitabevi, Ankara, 2019.
  • G. F.,Versteeg, W. P. Van Swaaij, Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions, Journal of Chemical Engineering Data 33 (1988) 29–34.
  • A. Poisson, A. Papaud, Diffusion coefficients of major ions in seawater, Marine Chemistry 13 (4) (1983) 265–280.
  • A. P. Lamourelle, O. C. Sandall, Gas absorption into a turbulent liquid, Chemical Enginering Science 27 (5) (1972) 1035–1043.
  • S-M. Yih, K. -Y. Chen, Gas absorption into wavy and turbulent falling liquid films in a wetted-wall column, Chemical Engineering Communications 17 (1-6) (1982) 123–136.
  • H. -J. Cho, J. Choi, Calculation of the mass transfer coefficient for the dissolution of multiple carbon dioxide bubbles in sea water under varying conditions, Journal of Marine Science and Engineering 7 (12) (2019) 457 11 pages.
Year 2024, Volume: 10 Issue: 2, 399 - 414, 25.06.2024
https://doi.org/10.28979/jarnas.1404836

Abstract

Project Number

-

References

  • IPCC, Climate Change 2022: Impacts, Adaptation and Vulnerability, in: H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (Eds.), Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Switzerland, 2022, 35 pages.
  • IPCC, Global Warming of 1.5°C, in: Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (Eds.) Intergovernmental Panel on Climate Change, Switzerland, 2018, pp. 541–562.
  • H. Öztan, İ. Koçyiğit Çapoğlu, D. Uysal, Ö. M. Doğan, A parametric study to optimize the temperature of hazelnut and walnut shell gasification for hydrogen and methane production, Bioresource Technology Reports 23 (2023) 101581.
  • Ö. Yörük, D. Uysal Zıraman, B. Z. Uysal, Absorption of sulfur dioxide by iron(ii) hydroxide solution in a multiplate bubble column under magnetic field, Chemical Engineering & Technology 44 (1) (2021) 1336–1342.
  • Y. Yagizatli, B. Ulas, A. Sahin, İ. Ar, Investigation of sulfonation reaction kinetics and effect of sulfonation degree on membrane characteristics for PEMFC performance, Ionics 28 (5) (2022) 2323–2336.
  • R. Baumler, M. C. Arce, A. Pazaver, Quantification of influence and interest at IMO in Maritime Safety and Human Element matters, Marine Policy 133 (2021) 104746 12 pages.
  • H. Al Baroudi, A. Awoyomi, K. Patchigolla, K. Jonnalagadda, E. J. Anthony, A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage, Applied Energy 287 (2021) 116510 42 pages.
  • Z. Zhang, D. Huisingh, Carbon dioxide storage schemes: Technology, assessment and deployment, Journal of Cleaner Production 142 (2) (2017) 1055–1064.
  • A. A. Olajire, CO2 capture and separation technologies for end-of-pipe applications–A review, Energy 35 (6) (2010) 2610–2628.
  • J. Buckingham, T. R. Reina, M. S. Duyar, Recent advances in carbon dioxide capture for process intensification, Carbon Capture Science & Technology 2 (95) (2022) 100031 19 pages.
  • F. O. Ochedi, J. Yu, H. Yu, Y. Liu, A. Hussain, Carbon dioxide capture using liquid absorption methods: a review, Environmental Chemistry Letters 19 (2021) 77–109.
  • S. Ahn, H. J. Song, J. W. Park, J. H. Lee, I. Y. Lee, K. R. Jang, Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2, Korean Journal of Chemical Engineering, 27 (5) (2010) 1576–1580.
  • I. M. Bernhardsen, H. K. Knuutila, A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa, International Journal of Greenhouse Gas Control 61 (2017) 27–48.
  • M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption: A state-of-art review, Chemical Engineering Research and Design 89 (9) (2011) 1609–1624.
  • D. Uysal, Ö. M. Dogan, B. Z. Uysal, Kinetics of absorption of carbon dioxide into sodium metaborate solution, International Journal of Chemical Kinetics 49 (6) (2017) 377–386.
  • G. Genç Çelikçi, D. Uysal, B. Z. Uysal, Absorption of carbon dioxide into n-butanol and ethyl acetate in a column with structured packing, Chemical Engineering & Technology 45 (8) (2022) 1489–1496.
  • H. Li, Z. Tang, N. Li, L. Cui, X-Z. Mao, Mechanism and process study on steel slag enhancement for CO2 capture by seawater, Applied Energy 276 (2020) 115515 14 pages.
  • M. H. El-Naas, A. H. Al-Marzouqi, O. Chaalal, A combined approach for the management of desalination reject brine and capture of CO2, Desalination 251 (1-3) (2010) 70–74.
  • W. Wang, M. Hu, Y. Zheng, P. Wang, C. Ma, CO2 fixation in Ca2+-/Mg2+-rich aqueous solutions through enhanced carbonate precipitation, Industrial & Engineering Chemistry Research 50 (13) (2011) 8333–8339.
  • W. Wang, X. Liu, P. Wang, Y. Zheng, M. Wang, Enhancement of CO2 Mineralization in Ca2+-/Mg2+-rich aqueous solutions using insoluble amine, Industrial & Engineering Chemistry Research 52 (23) (2013) 8028–8033.
  • A. Said, H. -P. Mattila, M. Järvinen, R. Zevenhoven, Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2, Applied Energy 112 (2013) 765–771.
  • A. Said, T. Laukkanen, M. Järvinen, Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag, Applied Energy 177 (1) (2016) 602–611.
  • L. Kucka, J. Richter, E. Y. Kenig, A. Górak, Determination of gas–liquid reaction kinetics with a stirred cell reactor, Separation & Purification Technology 31 (2) (2003) 163–175.
  • J. Ying, D. A Eimer. Determination and measurements of mass transfer kinetics of co2 in concentrated aqueous monoethanolamine solutions by a stirred cell, Industrial & Engineering Chemistry Research 52 (7) (2013) 2548–2559.
  • J. M. Smith, H. C. Van Ness, M. M. Abbott, M. T. Swihart, Introduction to chemical engineering thermodynamics, Mc Graw-Hill, New York, 2022.
  • S. I. Sandler, Chemical, biochemical and engineering thermodynamics, 4th Edition, John Wiley & Sons Inc., New York, 2006.
  • G. Genç Çelikçi, Carbon dioxide capture in structured packing column with n-butanol and ethyl acetate, Doctoral Dissertation Gazi University (2020) Ankara.
  • D. Uysal, Absorption of carbon dioxide into calcium acetate solution, Doctoral Dissertation Gazi University (2016) Ankara.
  • A. H. G. Cents, F. T. de Brujin, D. W. F. Brilman, G. F. Versteeg, Validation of the Danckwerts-plot technique by simultaneous chemical absorption of CO2 and physical desorption of O2, Chemical Engineering Science 60 (21) (2005) 5809–5818.
  • A. Hoffmann, J. Maćkowiak, A. Gorak, M. Haas, J. M. Löning, T. Runowski, K. Hallenberger, Standardization of mass transfer measurements: a basis for the description of absorption processes, Chemical Engineering Research & Design 85 (1) (2007) 40–49.
  • C. D. Park, T. Nosoko, Three-dimensional wave dynamics on a falling film and associated mass transfer, AIChe Journal 49 (11) (2003) 2715–2727.
  • C. Wang, Z. Xu, C. Lai, X. Sun, Beyond the standard two-film theory: Computational fluid dynamics simulations for carbon dioxide capture in a wetted wall column, Chemical Engineering Science 184 (2018) 103–110.
  • B. Z. Uysal, Mass transfer-fundamentals and applications (in Turkish), 3th Edition, Gazi Kitabevi, Ankara, 2019.
  • G. F.,Versteeg, W. P. Van Swaaij, Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions, Journal of Chemical Engineering Data 33 (1988) 29–34.
  • A. Poisson, A. Papaud, Diffusion coefficients of major ions in seawater, Marine Chemistry 13 (4) (1983) 265–280.
  • A. P. Lamourelle, O. C. Sandall, Gas absorption into a turbulent liquid, Chemical Enginering Science 27 (5) (1972) 1035–1043.
  • S-M. Yih, K. -Y. Chen, Gas absorption into wavy and turbulent falling liquid films in a wetted-wall column, Chemical Engineering Communications 17 (1-6) (1982) 123–136.
  • H. -J. Cho, J. Choi, Calculation of the mass transfer coefficient for the dissolution of multiple carbon dioxide bubbles in sea water under varying conditions, Journal of Marine Science and Engineering 7 (12) (2019) 457 11 pages.
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Makaleler
Authors

İrem Koçyiğit Çapoğlu 0000-0003-0325-3903

Duygu Uysal 0000-0002-8963-6026

Özkan Murat Doğan 0000-0003-3801-3141

Bekir Zühtü Uysal 0000-0002-9475-9194

Project Number -
Early Pub Date June 25, 2024
Publication Date June 25, 2024
Submission Date December 15, 2023
Acceptance Date February 17, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Koçyiğit Çapoğlu, İ., Uysal, D., Doğan, Ö. M., Uysal, B. Z. (2024). Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys. Journal of Advanced Research in Natural and Applied Sciences, 10(2), 399-414. https://doi.org/10.28979/jarnas.1404836
AMA Koçyiğit Çapoğlu İ, Uysal D, Doğan ÖM, Uysal BZ. Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys. JARNAS. June 2024;10(2):399-414. doi:10.28979/jarnas.1404836
Chicago Koçyiğit Çapoğlu, İrem, Duygu Uysal, Özkan Murat Doğan, and Bekir Zühtü Uysal. “Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 2 (June 2024): 399-414. https://doi.org/10.28979/jarnas.1404836.
EndNote Koçyiğit Çapoğlu İ, Uysal D, Doğan ÖM, Uysal BZ (June 1, 2024) Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys. Journal of Advanced Research in Natural and Applied Sciences 10 2 399–414.
IEEE İ. Koçyiğit Çapoğlu, D. Uysal, Ö. M. Doğan, and B. Z. Uysal, “Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys”, JARNAS, vol. 10, no. 2, pp. 399–414, 2024, doi: 10.28979/jarnas.1404836.
ISNAD Koçyiğit Çapoğlu, İrem et al. “Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys”. Journal of Advanced Research in Natural and Applied Sciences 10/2 (June 2024), 399-414. https://doi.org/10.28979/jarnas.1404836.
JAMA Koçyiğit Çapoğlu İ, Uysal D, Doğan ÖM, Uysal BZ. Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys. JARNAS. 2024;10:399–414.
MLA Koçyiğit Çapoğlu, İrem et al. “Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 2, 2024, pp. 399-14, doi:10.28979/jarnas.1404836.
Vancouver Koçyiğit Çapoğlu İ, Uysal D, Doğan ÖM, Uysal BZ. Experimental Investigation of Seawater for the Absorption of Carbon Dioxide from Ship Chimneys. JARNAS. 2024;10(2):399-414.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).