Research Article
BibTex RIS Cite

Potasyum Borhidrürün Formik Asit Katalizörü Varlığındaki Hidrolizi

Year 2024, Volume: 10 Issue: 2, 464 - 475, 25.06.2024
https://doi.org/10.28979/jarnas.1409809

Abstract

Günümüzde artan enerji ihtiyacına paralel olarak özellikle fosil yakıtların tükenmesiyle birlikte alternatif yenilenebilir enerji kaynaklarına yönelim hızla artmaktadır. Artan bu eğilim ile birlikte, önemli bir enerji taşıyıcı kaynağı olan hidrojen öne çıkmaktadır. Hidroliz ile kolay, güvenilir ve hızlı bir şekilde hidrojen elde edebilme imkânı sağlayan borhidrürler bu kaynakların başında gelir. Ancak borhidrürlerin sulu ortamdaki hidrolizleri oldukça yavaş olduğundan reaksiyonu hızlandırmak amacıyla katalizörlerin kullanılması gerekir. Bu katalizörler homojen veya heterojen olabilirken, homojen katalizörlerin endüstriyel uygulamalarda daha fazla avantajı bulunur. Bu çalışma kapsamında potasyum borhidrürün (KBH4) asit bazlı homojen bir katalizör olan formik asit varlığında hidroliz reaksiyonu ele alınmıştır. Reaksiyonun kinetik davranışı formik asit miktarı, sıcaklık ve potasyum borhidrür konsantrasyonu parametreleri incelenerek belirlenmiştir. Farklı sıcaklık verilerinden yola çıkılıp reaksiyon hız eşitlikleri kullanılarak potasyum borhidrürün formik asit varlığında hidroliz reaksiyonunun hızı 5 litre H2/gkatdk civarında, reaksiyon hız derecesi 1.1, aktivasyon enerjisi 57.92 kJ/mol, reaksiyon entalpisi 55.32 kJ/mol, entropi azalışı 58.11 J/molK olarak bulunmuştur. Hidroliz reaksiyonuna ait Gibbs serbest enerjileri ise 20, 30, 40 ve 60 °C için sırasıyla 72.35, 72.93, 73.51, 74.67 kJ/mol olarak hesaplanmıştır. Sonuç olarak potasyum borhidrürün hidrolizi sonucu elde edilen hidrojenin, küçük ölçekli PEM yakıt hücrelerinin ihtiyacını karşılamak için yeterli seviyede olduğu, hidroliz reaksiyonunun hız değerlerinden anlaşılmaktadır.

References

  • Z. Ö. Özdemir, H. Mutlubaş, Enerji taşıyıcısı olarak hidrojen ve hidrojen üretim yöntemleri, Bartın University International Journal of Natural and Applied Sciences 2 (1) (2019) 16–34.
  • A. L. Kübra, E. B. Ateş, Sürdürülebilir hidrojen üretim teknolojileri: biyokütle temelli yaklaşımlar, Bartın University International Journal of Natural and Applied Sciences 5 (1) (2022) 18–37.
  • EnerjiEtüt (2023), https://www.enerjietutraporu.com/hidrojen-depolama-teknolojileri-nelerdir.html, Accessed 25 Dec 2023.
  • Tesisat (2016), https://www.tesisat.org/hidrojen-enerjisi-uretimi-ve-depolanmasi.html, Accessed 25 Dec 2023.
  • B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review, International Journal of Hydrogen Energy 32 (9) (2007) 1121–1140.
  • M. Paskevicius, L. H. Jepsen, P. Schouwink, R. Černý, D. B. Ravnsbæk, Y. Filinchuk, M. Dornheim, F. Besenbacher, T. R. Jensen, Metal borohydrides and derivatives–synthesis, structure and properties, Chemical Society Reviews 46 (5) (2017) 1565–1634.
  • H. N. Abdelhamid, A review on hydrogen generation from the hydrolysis of sodium borohydride, International Journal of Hydrogen Energy 46 (1) (2021) 726–765.
  • J. Liu, Y. Ma, J. Yang, L. Sun, D. Guo, P. Xiao, Recent advance of metal borohydrides for hydrogen storage, Frontiers in Chemistry 10 (2022) 945208.
  • F. Xu, J. Ren, J. Ma, Y. Wang, K. Zhang, Z. Cao, Q. Sun, S. Wu, G. Li, S. Bai, A review of hydrogen production kinetics from the hydrolysis of NaBH4 solution catalyzed by Co-based catalysts, International Journal of Hydrogen Energy 50 (D) (2024) 827–844.
  • P. Brack, S. E. Dann, K. U. Wijayantha, Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions, Energy Science & Engineering 3 (3) (2015) 174–188.
  • M. Masjedi, Homogeneous catalysts for the hydrolysis of Sodium Borohydride: synthesis, characterization and catalytic use, Doctoral Dissertation Orta Doğu Technical University (2010) Ankara.
  • S. Murugesan, V. Subramanian, Effects of acid accelerators on hydrogen generation from solid sodium borohydride using small scale devices, Journal of Power Sources 187 (2009) 216–223.
  • O Akdim, U. B. Demirci, P. Miele, Acetic acid, a relatively green single-use catalyst for hydrogen generation from sodium borohydride, International Journal of Hydrogen Energy 34 (2009) 7231–7238.
  • C. Saka, A. Balbay, Fast and effective hydrogen production from ethanolysis and hydrolysis reactions of potassium borohydride using phosphoric acid, International Journal of Hydrogen Energy 43 (43) (2018) 19976–19983.
  • C. Saka, A. Balbay, Influence of process parameters on enhanced hydrogen generation via semi-methanolysis and semi-ethanolysis reactions of sodium borohydride using phosphoric acid, International Journal of Hydrogen Energy 44 (2019) 30119–3011926.
  • A. Balbay, C. Saka, The effect of the concentration of hydrochloric acid and acetic acid aqueous solution for fast hydrogen production from methanol solution of NaBH4, International Journal of Hydrogen Energy 43 (2018) 14265–14272.
  • A. Balbay, C. Saka, Semi-methanolysis reaction of potassium borohydride with phosphoric acid for effective hydrogen production, International Journal of Hydrogen Energy 43 (2018) 21299–21306.
  • H. J. Kim, K. J. Shin, H. J. Kim, M. K. Han, H. Kim, Y. G. Shul, K. T. Jung, Hydrogen generation from aqueous acid-catalyzed hydrolysis of sodium borohydride, International Journal of Hydrogen Energy 35 (22) (2010) 12239–12245.
  • E. Fangaj, A. A. Ceyhan, Apricot Kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride, International Journal of Hydrogen Energy 45 (35) (2020) 17104–17117.
  • S. Kwon, M. J. Kim, S. Kang, T. Kim, Development of a high storage-density hydrogen generator using solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles, Applied Energy 251 (2019) 113331.
  • D. Kilinc, O. Sahin, High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst, Renewable Energy 161 (2020) 257–264.
  • Ö. Şahin, H. Dolaş, M. Özdemir, The effect of various factors on the hydrogen generation by hydrolysis reaction of potassium borohydride, International Journal of Hydrogen Energy 32 (13) (2007) 2330–2336.
  • A. Balbay, Ö. Şahin, Hydrogen production from sodium borohydride in boric acid-water mixtures, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (11) (2014) 1166–1174.
  • S. Özkar, Enhancement of catalytic activity by increasing surface area in heterogeneous catalysis, Applied Surface Science 256 (5) (2009) 1272–1277.
  • C. T. F. Lo, K. Karan, B. R. Davis, Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures, Industrial & Engineering Chemistry Research 46 (17) (2007) 5478–5484.
  • A. J. Hung, S. F. Tsai, Y. Y. Hsu, J. R. Ku, Y. H. Chen, C. C. Yu, Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation, International Journal of Hydrogen Energy 33 (21) (2008) 6205–6215.
  • M. T. Gencoglu, Z. Ural, Design of a PEM fuel cell system for residential application, International Journal of Hydrogen Energy 34 (12) (2009) 5242–5248.
  • Y. Wang, Y. Pang, H. Xu, A. Martinez, K. S. Chen, PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development–A review, Energy & Environmental Science 15 (6) (2022) 2288–2328.

Hydrolysis of Potassium Borohydride using Formic Acid Catalyst

Year 2024, Volume: 10 Issue: 2, 464 - 475, 25.06.2024
https://doi.org/10.28979/jarnas.1409809

Abstract

Nowadays, in parallel with the increasing energy requirements, especially with the depletion of fossil fuels, the trend towards alternative renewable energy sources is rapidly increasing. With this increasing trend, hydrogen, an important energy carrier source, comes to the fore. Borohydrides provide the opportunity to obtain hydrogen easily, reliably and quickly by hydrolysis. However, since the hydrolysis of borohydrides in aqueous solutions is slow, catalysts have to be used to accelerate the reaction. While these catalysts can be homogeneous or heterogeneous, homogeneous catalysts have more advantages in industrial applications. In this study, in the presence of formic acid, an acid-based homogeneous catalyst, the hydrolysis reaction of potassium borohydride (KBH4) was investigated. The kinetic behavior of the examined reaction was determined depending on formic acid amount, temperature, and potassium borohydride concentration. Based on different temperature data and reaction rate equations, the hydrolysis reaction rate is found as around 5 liters of H2/gcatmin, the reaction rate is 1.1, the activation energy is 57.92 kJ/mol, the reaction enthalpy is 55.32 kJ/mol, and the entropy decrease is 58.11 J/molK. The Gibbs free energies of the hydrolysis reaction were calculated as 72.35, 72.93, 73.51, 74.67 kJ/mol for 20, 30, 40 and 60 °C, respectively. As a result, it is understood from the hydrolysis reaction rate that the hydrogen obtained at the end of potassium borohydride hydrolysis is sufficient to meet the needs of small-scale PEM fuel cells.

References

  • Z. Ö. Özdemir, H. Mutlubaş, Enerji taşıyıcısı olarak hidrojen ve hidrojen üretim yöntemleri, Bartın University International Journal of Natural and Applied Sciences 2 (1) (2019) 16–34.
  • A. L. Kübra, E. B. Ateş, Sürdürülebilir hidrojen üretim teknolojileri: biyokütle temelli yaklaşımlar, Bartın University International Journal of Natural and Applied Sciences 5 (1) (2022) 18–37.
  • EnerjiEtüt (2023), https://www.enerjietutraporu.com/hidrojen-depolama-teknolojileri-nelerdir.html, Accessed 25 Dec 2023.
  • Tesisat (2016), https://www.tesisat.org/hidrojen-enerjisi-uretimi-ve-depolanmasi.html, Accessed 25 Dec 2023.
  • B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: a review, International Journal of Hydrogen Energy 32 (9) (2007) 1121–1140.
  • M. Paskevicius, L. H. Jepsen, P. Schouwink, R. Černý, D. B. Ravnsbæk, Y. Filinchuk, M. Dornheim, F. Besenbacher, T. R. Jensen, Metal borohydrides and derivatives–synthesis, structure and properties, Chemical Society Reviews 46 (5) (2017) 1565–1634.
  • H. N. Abdelhamid, A review on hydrogen generation from the hydrolysis of sodium borohydride, International Journal of Hydrogen Energy 46 (1) (2021) 726–765.
  • J. Liu, Y. Ma, J. Yang, L. Sun, D. Guo, P. Xiao, Recent advance of metal borohydrides for hydrogen storage, Frontiers in Chemistry 10 (2022) 945208.
  • F. Xu, J. Ren, J. Ma, Y. Wang, K. Zhang, Z. Cao, Q. Sun, S. Wu, G. Li, S. Bai, A review of hydrogen production kinetics from the hydrolysis of NaBH4 solution catalyzed by Co-based catalysts, International Journal of Hydrogen Energy 50 (D) (2024) 827–844.
  • P. Brack, S. E. Dann, K. U. Wijayantha, Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions, Energy Science & Engineering 3 (3) (2015) 174–188.
  • M. Masjedi, Homogeneous catalysts for the hydrolysis of Sodium Borohydride: synthesis, characterization and catalytic use, Doctoral Dissertation Orta Doğu Technical University (2010) Ankara.
  • S. Murugesan, V. Subramanian, Effects of acid accelerators on hydrogen generation from solid sodium borohydride using small scale devices, Journal of Power Sources 187 (2009) 216–223.
  • O Akdim, U. B. Demirci, P. Miele, Acetic acid, a relatively green single-use catalyst for hydrogen generation from sodium borohydride, International Journal of Hydrogen Energy 34 (2009) 7231–7238.
  • C. Saka, A. Balbay, Fast and effective hydrogen production from ethanolysis and hydrolysis reactions of potassium borohydride using phosphoric acid, International Journal of Hydrogen Energy 43 (43) (2018) 19976–19983.
  • C. Saka, A. Balbay, Influence of process parameters on enhanced hydrogen generation via semi-methanolysis and semi-ethanolysis reactions of sodium borohydride using phosphoric acid, International Journal of Hydrogen Energy 44 (2019) 30119–3011926.
  • A. Balbay, C. Saka, The effect of the concentration of hydrochloric acid and acetic acid aqueous solution for fast hydrogen production from methanol solution of NaBH4, International Journal of Hydrogen Energy 43 (2018) 14265–14272.
  • A. Balbay, C. Saka, Semi-methanolysis reaction of potassium borohydride with phosphoric acid for effective hydrogen production, International Journal of Hydrogen Energy 43 (2018) 21299–21306.
  • H. J. Kim, K. J. Shin, H. J. Kim, M. K. Han, H. Kim, Y. G. Shul, K. T. Jung, Hydrogen generation from aqueous acid-catalyzed hydrolysis of sodium borohydride, International Journal of Hydrogen Energy 35 (22) (2010) 12239–12245.
  • E. Fangaj, A. A. Ceyhan, Apricot Kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride, International Journal of Hydrogen Energy 45 (35) (2020) 17104–17117.
  • S. Kwon, M. J. Kim, S. Kang, T. Kim, Development of a high storage-density hydrogen generator using solid-state NaBH4 as a hydrogen source for unmanned aerial vehicles, Applied Energy 251 (2019) 113331.
  • D. Kilinc, O. Sahin, High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst, Renewable Energy 161 (2020) 257–264.
  • Ö. Şahin, H. Dolaş, M. Özdemir, The effect of various factors on the hydrogen generation by hydrolysis reaction of potassium borohydride, International Journal of Hydrogen Energy 32 (13) (2007) 2330–2336.
  • A. Balbay, Ö. Şahin, Hydrogen production from sodium borohydride in boric acid-water mixtures, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (11) (2014) 1166–1174.
  • S. Özkar, Enhancement of catalytic activity by increasing surface area in heterogeneous catalysis, Applied Surface Science 256 (5) (2009) 1272–1277.
  • C. T. F. Lo, K. Karan, B. R. Davis, Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures, Industrial & Engineering Chemistry Research 46 (17) (2007) 5478–5484.
  • A. J. Hung, S. F. Tsai, Y. Y. Hsu, J. R. Ku, Y. H. Chen, C. C. Yu, Kinetics of sodium borohydride hydrolysis reaction for hydrogen generation, International Journal of Hydrogen Energy 33 (21) (2008) 6205–6215.
  • M. T. Gencoglu, Z. Ural, Design of a PEM fuel cell system for residential application, International Journal of Hydrogen Energy 34 (12) (2009) 5242–5248.
  • Y. Wang, Y. Pang, H. Xu, A. Martinez, K. S. Chen, PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development–A review, Energy & Environmental Science 15 (6) (2022) 2288–2328.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering (Other)
Journal Section Research Article
Authors

Mehmet Emre Kenar 0009-0001-3241-6874

Ömer Şahin 0000-0003-4575-3762

Fatma Elif Genceli Güner 0000-0001-6201-6719

Early Pub Date June 25, 2024
Publication Date June 25, 2024
Submission Date December 25, 2023
Acceptance Date April 29, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Kenar, M. E., Şahin, Ö., & Genceli Güner, F. E. (2024). Potasyum Borhidrürün Formik Asit Katalizörü Varlığındaki Hidrolizi. Journal of Advanced Research in Natural and Applied Sciences, 10(2), 464-475. https://doi.org/10.28979/jarnas.1409809
AMA Kenar ME, Şahin Ö, Genceli Güner FE. Potasyum Borhidrürün Formik Asit Katalizörü Varlığındaki Hidrolizi. JARNAS. June 2024;10(2):464-475. doi:10.28979/jarnas.1409809
Chicago Kenar, Mehmet Emre, Ömer Şahin, and Fatma Elif Genceli Güner. “Potasyum Borhidrürün Formik Asit Katalizörü Varlığındaki Hidrolizi”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 2 (June 2024): 464-75. https://doi.org/10.28979/jarnas.1409809.
EndNote Kenar ME, Şahin Ö, Genceli Güner FE (June 1, 2024) Potasyum Borhidrürün Formik Asit Katalizörü Varlığındaki Hidrolizi. Journal of Advanced Research in Natural and Applied Sciences 10 2 464–475.
IEEE M. E. Kenar, Ö. Şahin, and F. E. Genceli Güner, “Potasyum Borhidrürün Formik Asit Katalizörü Varlığındaki Hidrolizi”, JARNAS, vol. 10, no. 2, pp. 464–475, 2024, doi: 10.28979/jarnas.1409809.
ISNAD Kenar, Mehmet Emre et al. “Potasyum Borhidrürün Formik Asit Katalizörü Varlığındaki Hidrolizi”. Journal of Advanced Research in Natural and Applied Sciences 10/2 (June 2024), 464-475. https://doi.org/10.28979/jarnas.1409809.
JAMA Kenar ME, Şahin Ö, Genceli Güner FE. Potasyum Borhidrürün Formik Asit Katalizörü Varlığındaki Hidrolizi. JARNAS. 2024;10:464–475.
MLA Kenar, Mehmet Emre et al. “Potasyum Borhidrürün Formik Asit Katalizörü Varlığındaki Hidrolizi”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 2, 2024, pp. 464-75, doi:10.28979/jarnas.1409809.
Vancouver Kenar ME, Şahin Ö, Genceli Güner FE. Potasyum Borhidrürün Formik Asit Katalizörü Varlığındaki Hidrolizi. JARNAS. 2024;10(2):464-75.


TR Dizin 20466




Academindex 30370    

SOBİAD 20460               

Scilit 30371                            

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).