Research Article
BibTex RIS Cite

Determination of Superoxide Radical Scavenging Activity and Total Antioxidant Capacity by Modified DMPD Method

Year 2024, Volume: 10 Issue: 3, 506 - 519, 30.09.2024
https://doi.org/10.28979/jarnas.1382201

Abstract

Among the reactive oxygen species, Superoxide radicals can produce dangerous species that cause lipid peroxidation. Therefore, the determination and scavenging of superoxide radicals is critical. Our study is based on the interaction of the superoxide radical produced from the β-Nicotinamide adenine dinucleotide reduced disodium salt hydrate and phenazine methosulfate (NADH-PMS) system with N, N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) to form the pink colored DMPD-quinone (DMPDQ) radical. In the presence of scavengers with superoxide radical scavenging activity (antioxidants, herbal teas) the color intensity decreases due to reduced DMPDQ radical production. The absorbance of the colored reference solution and the sample solution containing the radical scavenger was measured at 552 nm. The difference in absorbance (ΔA) between the reference solution and the sample solution was found. ΔA is proportional to the scavenger concentration. In the study, the superoxide radical scavenging effect of trolox (TR) and different AOXs was investigated. The superoxide radical scavenging effect of three different herbal tea infusion solutions was measured with this method. From the graph drawn between herbal tea concentrations and percentage inhibition values, 50% inhibition (EC50) values of herbal teas were found. EC50 method values were compared with the EC50 values of the nitroblue tetrazolium (NBT) and the 2,2'-azino-bis(3-etilbenzotiyazolin-6-sülfonik asit (ABTS) method. In addition, ABTS, cupric reducing antioxidant capacity (CUPRAC), and this study total antioxidant capacity (TAC) values of herbal tea infusions were calculated and compared.

Supporting Institution

TÜBİTAK, Grant number: 114Z089 and Office of Scientific Research Projects Coordination at İstanbul University-Cerrahpaşa, Grant number: FDP-2017-24832

References

  • B. Halliwell, Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life, Plant Physiology 141 (2) (2006) 312-322.
  • P. A. Riley, Free radicals in biology: Oxidative stress and the effects of ionizing radiation, International Journal of Radiation Biology 65 (1) (1994) 27–33.
  • L. A. Pham-Huy, H. He, C. Pham-Huy, Free radicals, antioxidants in disease and health, International Journal of Biomedical Science 4 (2) (2008) 89–96.
  • V. I. Lushchak, O. Lushchak, Interplay between reactive oxygen and nitrogen species in living organisms, Chemico-Biological Interactions 349 (2021) 109680 6 pages.
  • B. Halliwell, Free radicals and antioxidants: Updating a personal view, Nutrition Reviews 70 (5) (2012) 257–265.
  • B. Li, S. B. Vik, Y. Tu, Theaflavins inhibit the ATP synthase and the respiratory chain without increasing superoxide production, The Journal of Nutritional Biochemistry 23 (8) (2012) 953–960.
  • H. Takahashi, A. Nishina, R. H. Fukumoto, H. Kimura, M. Koketsu, H. Ishihara, Selenocarbamates are effective superoxide anion scavengers in vitro, European Journal of Pharmaceutical Sciences 24 (4) (2005) 291–295.
  • M. D. Brand, The sites and topology of mitochondrial superoxide production, Experimental Gerontology 45 (7–8) (2010) 466–472.
  • S. Dimauro, E. A. Schon, Mitochondrial respiratory-chain diseases, The New England Journal of Medicine 348 (26) (2003) 2656–2668.
  • I. Fridovich, Oxygen toxicity: A radical explanation, Annual Review of Biochemistry 201 (8) (1995) 1203–1209.
  • B. Halliwell, J. M. C. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochemical Journal 219 (1) (1984) 1–14.
  • G. Martemucci, C. Costagliola, M. Mariano, L. D’andrea, P. Napolitano, A. G. D’Alessandro, Free radical properties, source and targets, antioxidant consumption and health, Oxygen 2 (2) (2022) 48–78.
  • R. Apak, K. Güçlü, M. Özyürek, S. E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, Journal of Agricultural and Food Chemistry 52 (26) (2004) 7970–7981.
  • F. Shahidi, P. Ambigaipalan, Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review, Journal of Functional Foods 18 (2015) 820–897.
  • R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biology and Medicine 26 (9–10) (1999) 1231–1237.
  • I. F. F. Benzie, J. J. Strain, Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration, Analytical Biochemistry 239 (1996) 70–76.
  • W. Brand-Williams, M. E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT - Food Science and Technology 28 (1) (1995) 25–30.
  • V. Fogliano, V. Verde, G. Randazzo, A. Ritieni, Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines, Journal of Agricultural and Food Chemistry 47 (3) (1999) 1035–1040.
  • M. D. Rivero-Pérez, P. Muñiz, M. L. González-Sanjosé, Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies, Journal of Agricultural and Food Chemistry 55 (14) (2007) 5476–5483.
  • K. Hirayama, N. Unohara, Spectrophotometric catalytic determination of an ultratrace amount of ıron(IIl) in water based on the oxidation of N, N-Dimethyl-p-phenylenediamine by hydrogen peroxide, Analytical Chemistry 60 (23) (1988) 2573–2577.
  • M. N. Ashgar, I. U. Khan, M. N. Arshad, L. Sherin, Evaluation of antioxidant activity using an Improved DMPD radical cation decolorization assay, Acta Chimica Slovenica 54 (2007) 295–300.
  • P. Saha, P. Banerjee, L. Auddya, P. Pal, M. Das, M. Dutta, S. Sen, M. C. Mondal, A. Kumar, U. K. Biswas, Simple modified colorimetric methods for assay of total oxidative stress and antioxidant defense in plasma: Study in diabetic patients, Archives of Medicine 7 (5) (2015) 1–7.
  • S. D. Çekiç, A. N. Avan, S. Uzunboy, R. Apak, A colourimetric sensor for the simultaneous determination of oxidative status and antioxidant activity on the same membrane: N, N-Dimethyl-p-phenylene diamine (DMPD) on Nafion, Analytica Chimica Acta 865 (1) (2015) 60–70.
  • F. Dondurmacıoğlu, A. N. Avan, R. Apak, Simultaneous detection of superoxide anion radicals and determination of the superoxide scavenging activity of antioxidants using an N,N- dimethyl-p-phenylene diamine/Nafion colorimetric sensor, Analytical Methods 9 (43) (2017) 6202–6212.
  • M. Nishikimi, N. Appaji Rao, K. Yagi, The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen, Biochemical and Biophysical Research Communications 46 (2) (1972) 849–854.
  • M. P. Chagas, J. C. C. Santos, E. B. G. N. Santos, T. D. Oliveira, M. Korn, Exploiting iminoquinone free radical production for thiol based drugs determination in pharmaceutical formulations, Journal of the Brazilian Chemical Society 20 (9) (2009) 1646–1652.
  • R. Apak, K. Güçlü, M. Özyürek, S. Esin Karademir, E. Erçaǧ, The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas, International Journal of Food Sciences and Nutrition 57 (5–6) (2006) 292–304.
  • D. Amic, D. Davidovi-Ami, D. Belo, V. Rastija, B. Lui, N. Trinajsti, SAR and QSAR of the antioxidant activity of flavonoids, Current Medicinal Chemistry 14 (2007) 827–845.
  • A. T. Diplock, J. L. Charuleux, G. Crozier-Willi, F. J. Kok, C. Rice-Evans, M. Roberfroid, W. Stahl, J. Viña-Ribes, Functional food science and defence against reactive oxidative species, British Journal of Nutrition 80 (S1) (1998) 77–112.
  • C. A. Rice-Evans, N. J. Miller, G. Paganga, Structure-antıoxıdant actıvıty relatıonshıps of flavonoıds and phenolıc acıds, Free Radical Biology & Medicine 20 (7) (1996) 933–956.
  • M. Atinç, İ. Kalkan, Flavonoids in food and their health benefits, Aydın Gastronomy 2 (1) (2018) 31–38.
  • K. Furuno, T. Akasako, N. Sugihara, The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids, Biological and Pharmaceutical Bulletin 25 (1) (2002) 19–23.
  • A. A. Bunaciu, A. F. Danet, Ş. Fleschin, H. Y. Aboul-Enein, Recent applications for in vitro antioxidant activity assay, Critical Reviews in Analytical Chemistry 46 (5) (2016) 389–399.
  • B. A. Sutherland, R. M. A. Rahman, I. Appleton, Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration, The Journal of Nutritional Biochemistry 17 (5) (2006) 291–306.
  • T. Toyo’oka, T. Kashiwazaki, M. Kato, On-line screening methods for antioxidants scavenging superoxide anion radical and hydrogen peroxide by liquid chromatography with indirect chemiluminescence detection, Talanta 60 (2-3) (2003) 467–475.
  • A. Yildirim, A. Mavi, M. Oktay, A. A. Kara, O. F. Algur, V. Bilaloglu, Comparison of antioxidant and antimicrobial activities of Tilia (Tilia argentea Desf ex DC), sage (Salvia triloba L.), and Black tea (Camellia sinensis) extracts, Journal of Agricultural and Food Chemistry 48 (10) (2000) 5030–5034.
  • T. Unno, F. Yayabe, T. Hayakawa, H. Tsuge, Electron spin resonance spectroscopic evaluation of scavenging activity of tea catechins on superoxide radicals generated by a phenazine methosulfate and NADH system, Food Chemistry 76 (2) (2002) 259–265.
  • J. Robak, R. J. Gryglewski, Flavonoids are scavengers of superoxide anions, Biochemical Pharmacology 37 (5) (1988) 837–841.
  • S. Karakaya, S. Nehir El, Quercetin, luteolin, apigenin and kaempferol contents of some foods, Food Chemistry 66 (3) (1999) 289–292.
  • S. Salman, G. Öz, R. Felek, A. Haznedar, T. Turna, F. Özdemir, Effects of fermentation time on phenolic composition, antioxidant and antimicrobial activities of green, oolong, and black teas, Food Bioscience 49 (2022) 101884 9 pages.

Modifiye DMPD Yöntemi ile Süperoksit Radikali Süpürme Aktivitesi ve Toplam Antioksidan Kapasite Tayini

Year 2024, Volume: 10 Issue: 3, 506 - 519, 30.09.2024
https://doi.org/10.28979/jarnas.1382201

Abstract

Reaktif oksijen türleri içinde yer alan süperoksit radikalleri lipid peroksidasyonuna neden olan tehlikeli türler üretebilir. Bu nedenle süperoksit radikali tayini, süpürülmesi çok önemlidir. Çalışmamız β-Nicotinamid adenin dinükleotid indirgenmiş disodyum tuz hidratı ve fenazin metosulfat (NADH-PMS) sisteminden üretilen süperoksit radikalinin N, N-dimetil-p-fenilendiamin dihidroklorür (DMPD) ile etkileşimi sonucu pembe renkli DMPD-yarıkinon (DMPDQ) radikali oluşturmasına dayanmaktadır. Süperoksit radikali giderme aktivitesine sahip süpürücüler (antioksidan, bitki çayları) varlığında daha az DMPDQ radikali üretimi nedeniyle renk yoğunluğu azalır. Renkli referans çözeltisinin ve radikal süpürücü içeren örnek çözeltisinin absorbansı 552 nm’de ölçülmüştür. Referans çözelti ile örnek çözeltisinin absorbans farkı (ΔA) bulunmuştur. ΔA ile süpürücü derişimi orantılıdır. Çalışmada, trolox (TR) ve farklı antioksidanların (AOX) süperoksit radikal süpürücü etkisi araştırılmıştır. Yöntemle üç farklı bitki çayı infüzyon çözeltisinin süperoksit radikal süpürücü etkisi ölçülmüştür. Bitki çayı derişimleri ile yüzde inhibisyon değerleri arasında çizilen grafikten bitki çaylarının %50 inhibisyon (EC50) değerleri bulunmuştur. Bulunan EC50 değerleri süperoksit radikal tayininde yaygın olarak kullanılan nitroblue tetrazolium (NBT) ve 2,2'-azino-bis(3-etilbenzotiyazolin-6-sülfonik asit (ABTS) yöntemi EC50 değerleriyle karşılaştırılmıştır. Ayrıca bitki çayı infüzyonlarının ABTS, bakır(II) iyonu indirgeme antioksidan kapasite (CUPRAC) yöntemi ve çalışılan yöntemde toplam antioksidan kapasite değerleri (TAC) hesaplanıp, karşılaştırılmıştır.

Supporting Institution

TÜBİTAK, Proje No: 114Z089 ve İstanbul Üniversitesi-Cerrahpaşa Bilimsel Araştırma Projeleri Koordinasyon Birimi, Proje No: FDP-2017-24832

References

  • B. Halliwell, Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life, Plant Physiology 141 (2) (2006) 312-322.
  • P. A. Riley, Free radicals in biology: Oxidative stress and the effects of ionizing radiation, International Journal of Radiation Biology 65 (1) (1994) 27–33.
  • L. A. Pham-Huy, H. He, C. Pham-Huy, Free radicals, antioxidants in disease and health, International Journal of Biomedical Science 4 (2) (2008) 89–96.
  • V. I. Lushchak, O. Lushchak, Interplay between reactive oxygen and nitrogen species in living organisms, Chemico-Biological Interactions 349 (2021) 109680 6 pages.
  • B. Halliwell, Free radicals and antioxidants: Updating a personal view, Nutrition Reviews 70 (5) (2012) 257–265.
  • B. Li, S. B. Vik, Y. Tu, Theaflavins inhibit the ATP synthase and the respiratory chain without increasing superoxide production, The Journal of Nutritional Biochemistry 23 (8) (2012) 953–960.
  • H. Takahashi, A. Nishina, R. H. Fukumoto, H. Kimura, M. Koketsu, H. Ishihara, Selenocarbamates are effective superoxide anion scavengers in vitro, European Journal of Pharmaceutical Sciences 24 (4) (2005) 291–295.
  • M. D. Brand, The sites and topology of mitochondrial superoxide production, Experimental Gerontology 45 (7–8) (2010) 466–472.
  • S. Dimauro, E. A. Schon, Mitochondrial respiratory-chain diseases, The New England Journal of Medicine 348 (26) (2003) 2656–2668.
  • I. Fridovich, Oxygen toxicity: A radical explanation, Annual Review of Biochemistry 201 (8) (1995) 1203–1209.
  • B. Halliwell, J. M. C. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochemical Journal 219 (1) (1984) 1–14.
  • G. Martemucci, C. Costagliola, M. Mariano, L. D’andrea, P. Napolitano, A. G. D’Alessandro, Free radical properties, source and targets, antioxidant consumption and health, Oxygen 2 (2) (2022) 48–78.
  • R. Apak, K. Güçlü, M. Özyürek, S. E. Karademir, Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, Journal of Agricultural and Food Chemistry 52 (26) (2004) 7970–7981.
  • F. Shahidi, P. Ambigaipalan, Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review, Journal of Functional Foods 18 (2015) 820–897.
  • R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biology and Medicine 26 (9–10) (1999) 1231–1237.
  • I. F. F. Benzie, J. J. Strain, Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration, Analytical Biochemistry 239 (1996) 70–76.
  • W. Brand-Williams, M. E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity, LWT - Food Science and Technology 28 (1) (1995) 25–30.
  • V. Fogliano, V. Verde, G. Randazzo, A. Ritieni, Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines, Journal of Agricultural and Food Chemistry 47 (3) (1999) 1035–1040.
  • M. D. Rivero-Pérez, P. Muñiz, M. L. González-Sanjosé, Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies, Journal of Agricultural and Food Chemistry 55 (14) (2007) 5476–5483.
  • K. Hirayama, N. Unohara, Spectrophotometric catalytic determination of an ultratrace amount of ıron(IIl) in water based on the oxidation of N, N-Dimethyl-p-phenylenediamine by hydrogen peroxide, Analytical Chemistry 60 (23) (1988) 2573–2577.
  • M. N. Ashgar, I. U. Khan, M. N. Arshad, L. Sherin, Evaluation of antioxidant activity using an Improved DMPD radical cation decolorization assay, Acta Chimica Slovenica 54 (2007) 295–300.
  • P. Saha, P. Banerjee, L. Auddya, P. Pal, M. Das, M. Dutta, S. Sen, M. C. Mondal, A. Kumar, U. K. Biswas, Simple modified colorimetric methods for assay of total oxidative stress and antioxidant defense in plasma: Study in diabetic patients, Archives of Medicine 7 (5) (2015) 1–7.
  • S. D. Çekiç, A. N. Avan, S. Uzunboy, R. Apak, A colourimetric sensor for the simultaneous determination of oxidative status and antioxidant activity on the same membrane: N, N-Dimethyl-p-phenylene diamine (DMPD) on Nafion, Analytica Chimica Acta 865 (1) (2015) 60–70.
  • F. Dondurmacıoğlu, A. N. Avan, R. Apak, Simultaneous detection of superoxide anion radicals and determination of the superoxide scavenging activity of antioxidants using an N,N- dimethyl-p-phenylene diamine/Nafion colorimetric sensor, Analytical Methods 9 (43) (2017) 6202–6212.
  • M. Nishikimi, N. Appaji Rao, K. Yagi, The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen, Biochemical and Biophysical Research Communications 46 (2) (1972) 849–854.
  • M. P. Chagas, J. C. C. Santos, E. B. G. N. Santos, T. D. Oliveira, M. Korn, Exploiting iminoquinone free radical production for thiol based drugs determination in pharmaceutical formulations, Journal of the Brazilian Chemical Society 20 (9) (2009) 1646–1652.
  • R. Apak, K. Güçlü, M. Özyürek, S. Esin Karademir, E. Erçaǧ, The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas, International Journal of Food Sciences and Nutrition 57 (5–6) (2006) 292–304.
  • D. Amic, D. Davidovi-Ami, D. Belo, V. Rastija, B. Lui, N. Trinajsti, SAR and QSAR of the antioxidant activity of flavonoids, Current Medicinal Chemistry 14 (2007) 827–845.
  • A. T. Diplock, J. L. Charuleux, G. Crozier-Willi, F. J. Kok, C. Rice-Evans, M. Roberfroid, W. Stahl, J. Viña-Ribes, Functional food science and defence against reactive oxidative species, British Journal of Nutrition 80 (S1) (1998) 77–112.
  • C. A. Rice-Evans, N. J. Miller, G. Paganga, Structure-antıoxıdant actıvıty relatıonshıps of flavonoıds and phenolıc acıds, Free Radical Biology & Medicine 20 (7) (1996) 933–956.
  • M. Atinç, İ. Kalkan, Flavonoids in food and their health benefits, Aydın Gastronomy 2 (1) (2018) 31–38.
  • K. Furuno, T. Akasako, N. Sugihara, The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids, Biological and Pharmaceutical Bulletin 25 (1) (2002) 19–23.
  • A. A. Bunaciu, A. F. Danet, Ş. Fleschin, H. Y. Aboul-Enein, Recent applications for in vitro antioxidant activity assay, Critical Reviews in Analytical Chemistry 46 (5) (2016) 389–399.
  • B. A. Sutherland, R. M. A. Rahman, I. Appleton, Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration, The Journal of Nutritional Biochemistry 17 (5) (2006) 291–306.
  • T. Toyo’oka, T. Kashiwazaki, M. Kato, On-line screening methods for antioxidants scavenging superoxide anion radical and hydrogen peroxide by liquid chromatography with indirect chemiluminescence detection, Talanta 60 (2-3) (2003) 467–475.
  • A. Yildirim, A. Mavi, M. Oktay, A. A. Kara, O. F. Algur, V. Bilaloglu, Comparison of antioxidant and antimicrobial activities of Tilia (Tilia argentea Desf ex DC), sage (Salvia triloba L.), and Black tea (Camellia sinensis) extracts, Journal of Agricultural and Food Chemistry 48 (10) (2000) 5030–5034.
  • T. Unno, F. Yayabe, T. Hayakawa, H. Tsuge, Electron spin resonance spectroscopic evaluation of scavenging activity of tea catechins on superoxide radicals generated by a phenazine methosulfate and NADH system, Food Chemistry 76 (2) (2002) 259–265.
  • J. Robak, R. J. Gryglewski, Flavonoids are scavengers of superoxide anions, Biochemical Pharmacology 37 (5) (1988) 837–841.
  • S. Karakaya, S. Nehir El, Quercetin, luteolin, apigenin and kaempferol contents of some foods, Food Chemistry 66 (3) (1999) 289–292.
  • S. Salman, G. Öz, R. Felek, A. Haznedar, T. Turna, F. Özdemir, Effects of fermentation time on phenolic composition, antioxidant and antimicrobial activities of green, oolong, and black teas, Food Bioscience 49 (2022) 101884 9 pages.
There are 40 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Ferda Dondurmacıoğlu 0000-0002-1261-8866

Publication Date September 30, 2024
Submission Date October 27, 2023
Acceptance Date May 17, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

APA Dondurmacıoğlu, F. (2024). Determination of Superoxide Radical Scavenging Activity and Total Antioxidant Capacity by Modified DMPD Method. Journal of Advanced Research in Natural and Applied Sciences, 10(3), 506-519. https://doi.org/10.28979/jarnas.1382201
AMA Dondurmacıoğlu F. Determination of Superoxide Radical Scavenging Activity and Total Antioxidant Capacity by Modified DMPD Method. JARNAS. September 2024;10(3):506-519. doi:10.28979/jarnas.1382201
Chicago Dondurmacıoğlu, Ferda. “Determination of Superoxide Radical Scavenging Activity and Total Antioxidant Capacity by Modified DMPD Method”. Journal of Advanced Research in Natural and Applied Sciences 10, no. 3 (September 2024): 506-19. https://doi.org/10.28979/jarnas.1382201.
EndNote Dondurmacıoğlu F (September 1, 2024) Determination of Superoxide Radical Scavenging Activity and Total Antioxidant Capacity by Modified DMPD Method. Journal of Advanced Research in Natural and Applied Sciences 10 3 506–519.
IEEE F. Dondurmacıoğlu, “Determination of Superoxide Radical Scavenging Activity and Total Antioxidant Capacity by Modified DMPD Method”, JARNAS, vol. 10, no. 3, pp. 506–519, 2024, doi: 10.28979/jarnas.1382201.
ISNAD Dondurmacıoğlu, Ferda. “Determination of Superoxide Radical Scavenging Activity and Total Antioxidant Capacity by Modified DMPD Method”. Journal of Advanced Research in Natural and Applied Sciences 10/3 (September 2024), 506-519. https://doi.org/10.28979/jarnas.1382201.
JAMA Dondurmacıoğlu F. Determination of Superoxide Radical Scavenging Activity and Total Antioxidant Capacity by Modified DMPD Method. JARNAS. 2024;10:506–519.
MLA Dondurmacıoğlu, Ferda. “Determination of Superoxide Radical Scavenging Activity and Total Antioxidant Capacity by Modified DMPD Method”. Journal of Advanced Research in Natural and Applied Sciences, vol. 10, no. 3, 2024, pp. 506-19, doi:10.28979/jarnas.1382201.
Vancouver Dondurmacıoğlu F. Determination of Superoxide Radical Scavenging Activity and Total Antioxidant Capacity by Modified DMPD Method. JARNAS. 2024;10(3):506-19.


TR Dizin 20466

ASCI Database31994



Academindex 30370    

SOBİAD 20460               

Scilit 30371                        

29804 As of 2024, JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).