Research Article
BibTex RIS Cite
Year 2025, Volume: 11 Issue: 1, 36 - 52, 31.03.2025
https://doi.org/10.28979/jarnas.1615044

Abstract

References

  • R. Li, Y. Gu, G. Zhang, Z. Yang, M. Li, Z. Zhang, Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide, Composites Science and Technology 143 (2017) 67–74.
  • S. Yasmin, M. Kamislioglu, M. I. Sayyed, Assessment of radiation shielding performance of Li2O-BaO-Bi2O3-P2O5 glass systems within the energy range from 0.081 MeV to 1.332 MeV via MCNP6 code, Optik (Stuttg) 274 (2023) 170529.
  • M. Büyükyıldız, M. A. Taşdelen, Y. Karabul, M. Çağlar, O. İçelli, E. Boydaş, Measurement of photon interaction parameters of high-performance polymers and their composites, Radiation Effects and Defects in Solids 173 (5-6) (2018) 474–488.
  • N. Nagaraj, H. C. Manjunatha, Y. S. Vidya, L. Seenappa, K. N. Sridhar, P. S. Damodara Gupta, Investigations on Lanthanide polymers for radiation shielding purpose, Radiation Physics and Chemistry 199 (2022) 110310.
  • M. Bozkurt, N. Şahin, Y. Karabul, M. Kılıç, Z. G. Özdemir, Radiation shielding performances of Na2SiO3 based low-cost micro and nano composites for diagnostic imaging, Progress in Nuclear Energy 143 (2022) 104058.
  • N. Şahin, M. Bozkurt, Y. Karabul, M. Kılıç, Z. G. Özdemir, Low cost radiation shielding material for low energy radiation applications: Epoxy/Yahyali Stone composites, Progress in Nuclear Energy 135 (2021) 103703.
  • C. V. More, Z. Alsayed, M. S. Badawi, A. A. Thabet, P. P. Pawar, Polymeric composite materials for radiation shielding: a review, Environmental Chemistry Letters 19 (2021) 2057-2090.
  • S. Bagheri, H. Khalafi, M. R. Tohidifar, Sa. Bagheri, Thermoplastic and thermoset polymer matrix composites reinforced with bismuth oxide as radiation shielding materials, Composites Part B 278 (2024) 111443.
  • H. Alavian, H. Tavakoli-Anbaran, Comparative study of mass attenuation coefficients for LDPE/metal oxide composites by Monte Carlo simulations, The European Physical Journal Plus 135 (1) (2020) 1–9.
  • M. R. Ambika, N. Nagaiah, S. K. Suman, Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester-based polymer composites, Journal of Applied Polymer Science 134 (13) (2017) 44657.
  • F. Kazemi, S. Malekie, M. A. Hosseini, A Monte Carlo study on the shielding properties of a novel Polyvinyl Alcohol (PVA)/WO3 composite, against gamma rays, using the MCNPX code, Journal of Biomedical Physics and Engineering 9 (4) (2019) 465–472.
  • S. Nambiar, E. K. Osei, J. T. W. Yeow, Polymer nanocomposite-based shielding against diagnostic X-rays, Journal of Applied Polymer Science 127 (6) (2013) 4939–4946.
  • M. K. Hossain, G. A. Raihan, M. A. Akbar, M. H. Kabir Rubel, M. H. Ahmed, M. I. Khan, S. Hossain, S. K. Sen, M. I. E. Jalal, A. El-Denglawey, Current applications and future potential of rare earth oxides in sustainable nuclear, radiation, and energy devices: A review, ACS Applied Electronic Materials 4 (7) (2022) 3327–3353.
  • H. Wang, H. Zhang, Y. Su, T. Liu, H. Yu, Y. Yang, X. Li, B. Guo, Preparation and radiation shielding properties of Gd2O3/PEEK composites, Polymer Composites 36 (4) (2015) 651-659.
  • F. Whba, F. Mohamed, N. R. A. M. Rosli, I. A. Rahman, M. I. Idris, The crystalline structure of gadolinium oxide nanoparticles (Gd2O3-NPs) synthesized at different temperatures via X-ray diffraction (XRD) technique, Radiation Physics and Chemistry 179 (2021) 109212.
  • K. Wang, L. Ma, C. Yang, Z. Bian, D. Zhang, S. Cui, M. Wang, Z. Chen, X. Li, Recent progress in Gd-containing materials for neutron shielding applications: A review, Materials 16 (12) (2023) 4305.
  • R. Florez, H. A. Colorado, C. H. C. Giraldo, A. Alajo, Preparation and characterization of Portland cement pastes with Sm2O3 microparticle additions for neutron shielding applications, Construction Building Materials 191 (2018) 498–506.
  • Z. Huo, Y. Lu, H. Zhang, G. Zhong, Sm2O3 micron plates/B4C/HDPE composites containing high specific surface area fillers for neutron and gamma-ray complex radiation shielding, Composites Science and Technology 251 (2024) 110567.
  • Z. Huo, Y. Lu, Z. Chen, J. Zhang, H. Zhang, G. Zhong, Micromorphology tunable Eu2O3 submicron spheres reinforced boron-containing HDPE composites for neutron and gamma-ray complex radiation shielding, Ceramics International 51 (2) (2025) 2360-2372.
  • S. A. Issa, D. E. Abulyazied, A. W. Alrowaily, H. A. Saudi, E. S. Ali, A. M. A. Henaish, H. M. Zakaly, Improving electrical, optical and radiation shielding properties of polyvinyl alcohol yttrium oxide composites. Journal of Rare Earths 41 (12) (2023) 2002-2009.
  • D. Toyen, E. Wimolmala, N. Sombatsompop, T. Markpin, K. Saenboonruang, Sm2O3/UHMWPE composites for radiation shielding applications: Mechanical and dielectric properties under gamma irradiation and thermal neutron shielding, Radiation Physics and Chemistry 164 (2019) 108366.
  • G. Lakshminarayana, A. Kumar, A. Lira, A. Dahshan, H. H. Hegazy, I. V. Kityk, D. E. Lee, J. Yoon, T. Park, Comparative study of gamma-ray shielding features and some properties of different heavy metal oxide-based tellurite-rich glass systems, Radiation Physics and Chemistry 170 (2020) 108633.
  • H. M. H. Zakaly, Y. S. Rammah, H. O. Tekin, A. Ene, A. Badawi, S. A. M. Issa, Nuclear shielding performances of borate/sodium/potassium glasses doped with Sm3+ ions, Journal of Materials Research and Technology 18 (2022) 1424–1435.
  • H. J. Qi, M. C. Boyce, Stress–strain behavior of thermoplastic polyurethanes, Mechanics of Materials 37 (8) (2005) 817–839.
  • S. M. Sapuan, F. L. Pua, Y. A. El-Shekeil, F. M. AL-Oqla, Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites, Materials Design 50 (2013) 467–470.
  • V. Tokdemir, S. Altun, A case study of wood thermoplastic composite filament for 3D printing, Bioresources 17 (1) (2022) 21–36.
  • M. E. Turgay, B. Aras, N. Sezgin, M. Şengül, Shielding effect of aluminum against Cs-137 source, according to gamma ray transmission technique, Journal of Engineering Technology and Applied Sciences 7 (2) (2022) 109–113.
  • R. Sharma, V. Sharma, P. S. Singh, T. Singh, Effective atomic numbers for some calcium–strontium-borate glasses, Annals of Nuclear Energy 45 (2012) 144–149.
  • M. Çağlar, H. Kayacık, Y. Karabul, M. Kılıç, Z. G. Özdemir, O. İçelli, Na2Si3O7/BaO composites for the gamma-ray shielding in medical applications: Experimental, MCNP5, and WinXCom studies, Progress in Nuclear Energy 117 (2019) 103119.
  • L. Gerward, N. Guilbert, K. B. Jensen, H. Levring, WinXCom—a program for calculating X-ray attenuation coefficients, Radiation Physics and Chemistry 71 (3-4) (2004) 653–654.
  • M. J. Berger, J. H. Hubbell, XCOM: Photon cross sections on a personal computer, Oak Ridge, TN, 1987.
  • V. P. Singh, M. E. Medhat, S. P. Shirmardi, Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results, Radiation Physics and Chemistry 106 (2015) 255–260.
  • T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L. J. Cox, J. Durkee, J. Elson, M. Fensin, R. A. Forster, Initial MCNP6 release overview, Nuclear Technology 180 (3) (2012) 298–315.
  • J. S. Hendricks, K. J. Adams, T. E. Booth, J. F. Briesmeister, L. L. Carter, L. J. Cox, J. A. Favorite, R. A. Forster, G. W. McKinney, R. E. Prael, Present and future capabilities of MCNP, Applied Radiation and Isotopes 53 (4-5) (2000) 857–861.
  • E. Lacomme, M. I. Sayyed, H. A. A. Sidek, K. A. Matori, M. H. M. Zaid, Effect of bismuth and lithium substitution on radiation shielding properties of zinc borate glass system using Phy-X/PSD simulation, Results in Physics 20 (2021) 103768.
  • Y. S. Rammah, Evaluation of radiation shielding ability of boro-tellurite glasses: TeO2–B2O3–SrCl2–LiF–Bi2O3, Applied Physics A 125 (2019) 1–11.
  • O. Kilicoglu, C. V More, F. Akman, K. Dilsiz, H. Oğul, M.R. Kaçal, H. Polat, O. Agar, Micro Pb filled polymer composites: Theoretical, experimental and simulation results for γ-ray shielding performance, Radiation Physics and Chemistry 194 (2022) 110039.
  • I. I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Annals Nuclear Energy 24 (17) (1997) 1389–1401.
  • J. Wu, J. Hu, K. Wang, Y. Zhai, Z. Wang, Y. Feng, H. Fan, K. Wang, Y. Duan, Flexible stretchable low-energy X-ray (30–80 keV) radiation shielding material: Low-melting-point Ga1In1Sn7Bi1 alloy/thermoplastic polyurethane composite, Applied Radiation and Isotopes 192 (2023) 110603.
  • E. Beyazay, Y. Karabul, S. E. Korkut, M. Kılıç, Z. G. Özdemir, Multifunctional PCz/BaO nanocomposites: Ionizing radiation shielding ability and enhanced electric conductivity, Progress in Nuclear Energy 155 (2023) 104521.
  • S. P. Shirmardi, V. P. Singh, M. E. Medhat, R. Adeli, E. Saniei, MCNP modeling of attenuation coefficients of steel, red brass, Pearl and Beryl in comparison with experimental and XCOM data, Journal of Nuclear Energy Science Power Generation Technology 5 (2016) 2.
  • S. Chen, M. Bourham, A. Rabiei, Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams, Radiation Physics and Chemistry 117 (2015) 12–22.
  • H. Özdoğan, Y. A. Üncü, F. Akman, H. Polat, M. R. Kaçal, Investigation of gamma ray shielding characteristics of binary composites containing polyester resin and lead oxide, Polymers 16 (23) (2024) 3324.
  • Z. A. Alrowaili, E. O. Echeweozo, M. Kırkbınar, F. Çalışkan, J. S. Alzahrani, M. S. Al-Buriahi, Effect of bismuth oxide on radiation shielding and interaction characteristics of polyvinyl alcohol-based polymer: Potential use in medical apron design, Journal of Radiation Research and Applied Sciences 17 (2024) 101162.
  • Y. Ergin, Y. Karabul, Z. G. Özdemir, M. Kılıç, Experimental comparison of PbO and BaO addition effect on gamma ray shielding performance of epoxy polymer, European Journal of Science and Technology 16 (2019) 256–266.
  • M. R. Ambika, N. Nagaiah, S. K. Suman, Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester-based polymer composites, Journal of Applied Polymer Science 134 (13) (2017) 44657.
  • M. Y. A. Mostafa, H. M. H. Zakaly, S. A. M. Issa, H. A. Saudi, A. M. A. Henaish, Tailoring variations in the linear optical and radiation shielding parameters of PVA polymeric composite films doped with rare-earth elements, Applied Physics A 128 (3) (2022) 199.
  • M. M. Gouda, A. F. Osman, R. Awad, M. S. Badawi, Enhanced radiation shielding efficiency of polystyrene nanocomposites with tailored lead oxide nanoparticles, Scientific Reports 14 (1) (2024) 19970.
  • M. M. AbdelKader, M. T. Abou‑Laila, M. S. S. El‑Deeb, E. O. Taha, A. S. El‑Deeb, Structural, radiation shielding, thermal and dynamic mechanical analysis for waste rubber/ EPDM rubber composite loaded with Fe2O3 for green environment, Scientific Reports 14 (1) (2024) 12440.
  • F. Özkalaycı, M. R. Kaçal, O. Agar, H. Polat, A. Sharma, F. Akman, Lead (II) chloride effects on nuclear shielding capabilities of polymer composites, Journal of Physics and Chemistry of Solids 145 (2020) 109543.
  • P. Sathiyaraj, E. J. J. Samuel, C. C. S. Valeriano, M. Kurudirek, Effective atomic number and buildup factor calculations for metal nano particle doped polymer gel, Vacuum 143 (2017) 138–149.
  • M. V Muthamma, S. G. Bubbly, S. B. Gudennavar, K. C. S. Narendranath, Poly (vinyl alcohol)–bismuth oxide composites for X‐ray and γ‐ray shielding applications, Journal of Applied Polymer Science 136 (37) (2019) 47949.

The Role of Rare Earth Oxides in Enhancing Radiation Shielding of Thermoplastic Polyurethane Composites: A Combined WinXCom and MCNP6 Study

Year 2025, Volume: 11 Issue: 1, 36 - 52, 31.03.2025
https://doi.org/10.28979/jarnas.1615044

Abstract

As the use of radiation expands in fields, such as nuclear power, aerospace exploration, medicine, and particle accelerators, protecting the human body from hazardous radiation has become increasingly urgent. This study investigates the shielding performance against ionizing radiation of thermoplastic polyurethane (TPU) composites containing rare earth oxides (REOs) (R2O3, with R= Er, Sm, La) at varying weight percentages of 10% and 30%. Mass attenuation coefficients of TPU and TPU/REOs composites were calculated using the Windows version of photon cross sections on a personal computer (WinXCom) software for photon energies ranging from 1 keV to 100 GeV. These findings were validated through Monte Carlo N-Particle 6 (MCNP6) simulations. Radiation attenuation coefficients, such as the effective atomic number and half-value layer, were also determined based on the mass attenuation coefficients obtained. The WinXCom and MCNP6 simulations showed strong consistency across different additive rates and gamma radiation energies, with relative deviations ranging from 0-12.06 %. Notably, increasing the concentration of rare earth oxides in the TPU matrix improved the shielding properties of the composites, with a 30% by-weight addition of Er2O3 providing the best radiation shielding performance.

Ethical Statement

The study does not require approval from the ethics committee.

Supporting Institution

Istanbul Gelisim University

Thanks

The author would like to thank Dr. Yaşar Karabul and Dr. Mustafa Çağlar for their support.

References

  • R. Li, Y. Gu, G. Zhang, Z. Yang, M. Li, Z. Zhang, Radiation shielding property of structural polymer composite: Continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide, Composites Science and Technology 143 (2017) 67–74.
  • S. Yasmin, M. Kamislioglu, M. I. Sayyed, Assessment of radiation shielding performance of Li2O-BaO-Bi2O3-P2O5 glass systems within the energy range from 0.081 MeV to 1.332 MeV via MCNP6 code, Optik (Stuttg) 274 (2023) 170529.
  • M. Büyükyıldız, M. A. Taşdelen, Y. Karabul, M. Çağlar, O. İçelli, E. Boydaş, Measurement of photon interaction parameters of high-performance polymers and their composites, Radiation Effects and Defects in Solids 173 (5-6) (2018) 474–488.
  • N. Nagaraj, H. C. Manjunatha, Y. S. Vidya, L. Seenappa, K. N. Sridhar, P. S. Damodara Gupta, Investigations on Lanthanide polymers for radiation shielding purpose, Radiation Physics and Chemistry 199 (2022) 110310.
  • M. Bozkurt, N. Şahin, Y. Karabul, M. Kılıç, Z. G. Özdemir, Radiation shielding performances of Na2SiO3 based low-cost micro and nano composites for diagnostic imaging, Progress in Nuclear Energy 143 (2022) 104058.
  • N. Şahin, M. Bozkurt, Y. Karabul, M. Kılıç, Z. G. Özdemir, Low cost radiation shielding material for low energy radiation applications: Epoxy/Yahyali Stone composites, Progress in Nuclear Energy 135 (2021) 103703.
  • C. V. More, Z. Alsayed, M. S. Badawi, A. A. Thabet, P. P. Pawar, Polymeric composite materials for radiation shielding: a review, Environmental Chemistry Letters 19 (2021) 2057-2090.
  • S. Bagheri, H. Khalafi, M. R. Tohidifar, Sa. Bagheri, Thermoplastic and thermoset polymer matrix composites reinforced with bismuth oxide as radiation shielding materials, Composites Part B 278 (2024) 111443.
  • H. Alavian, H. Tavakoli-Anbaran, Comparative study of mass attenuation coefficients for LDPE/metal oxide composites by Monte Carlo simulations, The European Physical Journal Plus 135 (1) (2020) 1–9.
  • M. R. Ambika, N. Nagaiah, S. K. Suman, Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester-based polymer composites, Journal of Applied Polymer Science 134 (13) (2017) 44657.
  • F. Kazemi, S. Malekie, M. A. Hosseini, A Monte Carlo study on the shielding properties of a novel Polyvinyl Alcohol (PVA)/WO3 composite, against gamma rays, using the MCNPX code, Journal of Biomedical Physics and Engineering 9 (4) (2019) 465–472.
  • S. Nambiar, E. K. Osei, J. T. W. Yeow, Polymer nanocomposite-based shielding against diagnostic X-rays, Journal of Applied Polymer Science 127 (6) (2013) 4939–4946.
  • M. K. Hossain, G. A. Raihan, M. A. Akbar, M. H. Kabir Rubel, M. H. Ahmed, M. I. Khan, S. Hossain, S. K. Sen, M. I. E. Jalal, A. El-Denglawey, Current applications and future potential of rare earth oxides in sustainable nuclear, radiation, and energy devices: A review, ACS Applied Electronic Materials 4 (7) (2022) 3327–3353.
  • H. Wang, H. Zhang, Y. Su, T. Liu, H. Yu, Y. Yang, X. Li, B. Guo, Preparation and radiation shielding properties of Gd2O3/PEEK composites, Polymer Composites 36 (4) (2015) 651-659.
  • F. Whba, F. Mohamed, N. R. A. M. Rosli, I. A. Rahman, M. I. Idris, The crystalline structure of gadolinium oxide nanoparticles (Gd2O3-NPs) synthesized at different temperatures via X-ray diffraction (XRD) technique, Radiation Physics and Chemistry 179 (2021) 109212.
  • K. Wang, L. Ma, C. Yang, Z. Bian, D. Zhang, S. Cui, M. Wang, Z. Chen, X. Li, Recent progress in Gd-containing materials for neutron shielding applications: A review, Materials 16 (12) (2023) 4305.
  • R. Florez, H. A. Colorado, C. H. C. Giraldo, A. Alajo, Preparation and characterization of Portland cement pastes with Sm2O3 microparticle additions for neutron shielding applications, Construction Building Materials 191 (2018) 498–506.
  • Z. Huo, Y. Lu, H. Zhang, G. Zhong, Sm2O3 micron plates/B4C/HDPE composites containing high specific surface area fillers for neutron and gamma-ray complex radiation shielding, Composites Science and Technology 251 (2024) 110567.
  • Z. Huo, Y. Lu, Z. Chen, J. Zhang, H. Zhang, G. Zhong, Micromorphology tunable Eu2O3 submicron spheres reinforced boron-containing HDPE composites for neutron and gamma-ray complex radiation shielding, Ceramics International 51 (2) (2025) 2360-2372.
  • S. A. Issa, D. E. Abulyazied, A. W. Alrowaily, H. A. Saudi, E. S. Ali, A. M. A. Henaish, H. M. Zakaly, Improving electrical, optical and radiation shielding properties of polyvinyl alcohol yttrium oxide composites. Journal of Rare Earths 41 (12) (2023) 2002-2009.
  • D. Toyen, E. Wimolmala, N. Sombatsompop, T. Markpin, K. Saenboonruang, Sm2O3/UHMWPE composites for radiation shielding applications: Mechanical and dielectric properties under gamma irradiation and thermal neutron shielding, Radiation Physics and Chemistry 164 (2019) 108366.
  • G. Lakshminarayana, A. Kumar, A. Lira, A. Dahshan, H. H. Hegazy, I. V. Kityk, D. E. Lee, J. Yoon, T. Park, Comparative study of gamma-ray shielding features and some properties of different heavy metal oxide-based tellurite-rich glass systems, Radiation Physics and Chemistry 170 (2020) 108633.
  • H. M. H. Zakaly, Y. S. Rammah, H. O. Tekin, A. Ene, A. Badawi, S. A. M. Issa, Nuclear shielding performances of borate/sodium/potassium glasses doped with Sm3+ ions, Journal of Materials Research and Technology 18 (2022) 1424–1435.
  • H. J. Qi, M. C. Boyce, Stress–strain behavior of thermoplastic polyurethanes, Mechanics of Materials 37 (8) (2005) 817–839.
  • S. M. Sapuan, F. L. Pua, Y. A. El-Shekeil, F. M. AL-Oqla, Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites, Materials Design 50 (2013) 467–470.
  • V. Tokdemir, S. Altun, A case study of wood thermoplastic composite filament for 3D printing, Bioresources 17 (1) (2022) 21–36.
  • M. E. Turgay, B. Aras, N. Sezgin, M. Şengül, Shielding effect of aluminum against Cs-137 source, according to gamma ray transmission technique, Journal of Engineering Technology and Applied Sciences 7 (2) (2022) 109–113.
  • R. Sharma, V. Sharma, P. S. Singh, T. Singh, Effective atomic numbers for some calcium–strontium-borate glasses, Annals of Nuclear Energy 45 (2012) 144–149.
  • M. Çağlar, H. Kayacık, Y. Karabul, M. Kılıç, Z. G. Özdemir, O. İçelli, Na2Si3O7/BaO composites for the gamma-ray shielding in medical applications: Experimental, MCNP5, and WinXCom studies, Progress in Nuclear Energy 117 (2019) 103119.
  • L. Gerward, N. Guilbert, K. B. Jensen, H. Levring, WinXCom—a program for calculating X-ray attenuation coefficients, Radiation Physics and Chemistry 71 (3-4) (2004) 653–654.
  • M. J. Berger, J. H. Hubbell, XCOM: Photon cross sections on a personal computer, Oak Ridge, TN, 1987.
  • V. P. Singh, M. E. Medhat, S. P. Shirmardi, Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results, Radiation Physics and Chemistry 106 (2015) 255–260.
  • T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L. J. Cox, J. Durkee, J. Elson, M. Fensin, R. A. Forster, Initial MCNP6 release overview, Nuclear Technology 180 (3) (2012) 298–315.
  • J. S. Hendricks, K. J. Adams, T. E. Booth, J. F. Briesmeister, L. L. Carter, L. J. Cox, J. A. Favorite, R. A. Forster, G. W. McKinney, R. E. Prael, Present and future capabilities of MCNP, Applied Radiation and Isotopes 53 (4-5) (2000) 857–861.
  • E. Lacomme, M. I. Sayyed, H. A. A. Sidek, K. A. Matori, M. H. M. Zaid, Effect of bismuth and lithium substitution on radiation shielding properties of zinc borate glass system using Phy-X/PSD simulation, Results in Physics 20 (2021) 103768.
  • Y. S. Rammah, Evaluation of radiation shielding ability of boro-tellurite glasses: TeO2–B2O3–SrCl2–LiF–Bi2O3, Applied Physics A 125 (2019) 1–11.
  • O. Kilicoglu, C. V More, F. Akman, K. Dilsiz, H. Oğul, M.R. Kaçal, H. Polat, O. Agar, Micro Pb filled polymer composites: Theoretical, experimental and simulation results for γ-ray shielding performance, Radiation Physics and Chemistry 194 (2022) 110039.
  • I. I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Annals Nuclear Energy 24 (17) (1997) 1389–1401.
  • J. Wu, J. Hu, K. Wang, Y. Zhai, Z. Wang, Y. Feng, H. Fan, K. Wang, Y. Duan, Flexible stretchable low-energy X-ray (30–80 keV) radiation shielding material: Low-melting-point Ga1In1Sn7Bi1 alloy/thermoplastic polyurethane composite, Applied Radiation and Isotopes 192 (2023) 110603.
  • E. Beyazay, Y. Karabul, S. E. Korkut, M. Kılıç, Z. G. Özdemir, Multifunctional PCz/BaO nanocomposites: Ionizing radiation shielding ability and enhanced electric conductivity, Progress in Nuclear Energy 155 (2023) 104521.
  • S. P. Shirmardi, V. P. Singh, M. E. Medhat, R. Adeli, E. Saniei, MCNP modeling of attenuation coefficients of steel, red brass, Pearl and Beryl in comparison with experimental and XCOM data, Journal of Nuclear Energy Science Power Generation Technology 5 (2016) 2.
  • S. Chen, M. Bourham, A. Rabiei, Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams, Radiation Physics and Chemistry 117 (2015) 12–22.
  • H. Özdoğan, Y. A. Üncü, F. Akman, H. Polat, M. R. Kaçal, Investigation of gamma ray shielding characteristics of binary composites containing polyester resin and lead oxide, Polymers 16 (23) (2024) 3324.
  • Z. A. Alrowaili, E. O. Echeweozo, M. Kırkbınar, F. Çalışkan, J. S. Alzahrani, M. S. Al-Buriahi, Effect of bismuth oxide on radiation shielding and interaction characteristics of polyvinyl alcohol-based polymer: Potential use in medical apron design, Journal of Radiation Research and Applied Sciences 17 (2024) 101162.
  • Y. Ergin, Y. Karabul, Z. G. Özdemir, M. Kılıç, Experimental comparison of PbO and BaO addition effect on gamma ray shielding performance of epoxy polymer, European Journal of Science and Technology 16 (2019) 256–266.
  • M. R. Ambika, N. Nagaiah, S. K. Suman, Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester-based polymer composites, Journal of Applied Polymer Science 134 (13) (2017) 44657.
  • M. Y. A. Mostafa, H. M. H. Zakaly, S. A. M. Issa, H. A. Saudi, A. M. A. Henaish, Tailoring variations in the linear optical and radiation shielding parameters of PVA polymeric composite films doped with rare-earth elements, Applied Physics A 128 (3) (2022) 199.
  • M. M. Gouda, A. F. Osman, R. Awad, M. S. Badawi, Enhanced radiation shielding efficiency of polystyrene nanocomposites with tailored lead oxide nanoparticles, Scientific Reports 14 (1) (2024) 19970.
  • M. M. AbdelKader, M. T. Abou‑Laila, M. S. S. El‑Deeb, E. O. Taha, A. S. El‑Deeb, Structural, radiation shielding, thermal and dynamic mechanical analysis for waste rubber/ EPDM rubber composite loaded with Fe2O3 for green environment, Scientific Reports 14 (1) (2024) 12440.
  • F. Özkalaycı, M. R. Kaçal, O. Agar, H. Polat, A. Sharma, F. Akman, Lead (II) chloride effects on nuclear shielding capabilities of polymer composites, Journal of Physics and Chemistry of Solids 145 (2020) 109543.
  • P. Sathiyaraj, E. J. J. Samuel, C. C. S. Valeriano, M. Kurudirek, Effective atomic number and buildup factor calculations for metal nano particle doped polymer gel, Vacuum 143 (2017) 138–149.
  • M. V Muthamma, S. G. Bubbly, S. B. Gudennavar, K. C. S. Narendranath, Poly (vinyl alcohol)–bismuth oxide composites for X‐ray and γ‐ray shielding applications, Journal of Applied Polymer Science 136 (37) (2019) 47949.
There are 52 citations in total.

Details

Primary Language English
Subjects Material Physics, Polymer Physics
Journal Section Research Article
Authors

Seda Erdönmez 0000-0002-7167-7276

Publication Date March 31, 2025
Submission Date January 7, 2025
Acceptance Date March 21, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Erdönmez, S. (2025). The Role of Rare Earth Oxides in Enhancing Radiation Shielding of Thermoplastic Polyurethane Composites: A Combined WinXCom and MCNP6 Study. Journal of Advanced Research in Natural and Applied Sciences, 11(1), 36-52. https://doi.org/10.28979/jarnas.1615044
AMA Erdönmez S. The Role of Rare Earth Oxides in Enhancing Radiation Shielding of Thermoplastic Polyurethane Composites: A Combined WinXCom and MCNP6 Study. JARNAS. March 2025;11(1):36-52. doi:10.28979/jarnas.1615044
Chicago Erdönmez, Seda. “The Role of Rare Earth Oxides in Enhancing Radiation Shielding of Thermoplastic Polyurethane Composites: A Combined WinXCom and MCNP6 Study”. Journal of Advanced Research in Natural and Applied Sciences 11, no. 1 (March 2025): 36-52. https://doi.org/10.28979/jarnas.1615044.
EndNote Erdönmez S (March 1, 2025) The Role of Rare Earth Oxides in Enhancing Radiation Shielding of Thermoplastic Polyurethane Composites: A Combined WinXCom and MCNP6 Study. Journal of Advanced Research in Natural and Applied Sciences 11 1 36–52.
IEEE S. Erdönmez, “The Role of Rare Earth Oxides in Enhancing Radiation Shielding of Thermoplastic Polyurethane Composites: A Combined WinXCom and MCNP6 Study”, JARNAS, vol. 11, no. 1, pp. 36–52, 2025, doi: 10.28979/jarnas.1615044.
ISNAD Erdönmez, Seda. “The Role of Rare Earth Oxides in Enhancing Radiation Shielding of Thermoplastic Polyurethane Composites: A Combined WinXCom and MCNP6 Study”. Journal of Advanced Research in Natural and Applied Sciences 11/1 (March 2025), 36-52. https://doi.org/10.28979/jarnas.1615044.
JAMA Erdönmez S. The Role of Rare Earth Oxides in Enhancing Radiation Shielding of Thermoplastic Polyurethane Composites: A Combined WinXCom and MCNP6 Study. JARNAS. 2025;11:36–52.
MLA Erdönmez, Seda. “The Role of Rare Earth Oxides in Enhancing Radiation Shielding of Thermoplastic Polyurethane Composites: A Combined WinXCom and MCNP6 Study”. Journal of Advanced Research in Natural and Applied Sciences, vol. 11, no. 1, 2025, pp. 36-52, doi:10.28979/jarnas.1615044.
Vancouver Erdönmez S. The Role of Rare Earth Oxides in Enhancing Radiation Shielding of Thermoplastic Polyurethane Composites: A Combined WinXCom and MCNP6 Study. JARNAS. 2025;11(1):36-52.


TR Dizin 20466


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).