Research Article
BibTex RIS Cite
Year 2025, Volume: 11 Issue: 1, 53 - 62, 31.03.2025
https://doi.org/10.28979/jarnas.1624994

Abstract

References

  • M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, M. Sadeghi, Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic, Frontiers in Pharmacology 12 (2021) 643972.
  • C. L. M. Joseph, S. Havstad, D. R. Ownby, E. L. Peterson, M. Maliarik, M. J. McCabe, C. Barone, C. C. Johnson, Blood lead level and risk of asthma, Environmental Health Perspectives 113 (7) (2005) 900–904.
  • D. E. Jacobs, J. Wilson, S. L. Dixon, J. Smith, A. Evens, The relationship of housing and population health: A 30-year retrospective analysis, Environmental Health Perspectives 117 (4) (2009) 597–604.
  • S. Kianoush, M. Balali-Mood, S. R. Mousavi, V. Moradi, M. Sadeghi, B. Dadpour, O. Rajabi, M. T. Shakeri, Comparison of therapeutic effects of garlic and d-penicillamine in patients with chronic occupational lead poisoning, Basic and Clinical Pharmacology & Toxicology 110 (2012) 476–481.
  • K. P. Olympio, C. Gonçalves, W. M. Günther, E. J. Bechara, Neurotoxicity and aggressiveness triggered by low-level Lead in children: A review, Revista Panamericana de Salud Pública 26 (3) (2009) 266–275.
  • J. Kasten-Jolly, Y. Heo, D. A. Lawrence, Central nervous system cytokine gene expression: Modulation by lead, Journal of Biochemical and Molecular Toxicology 25 (1) (2011) 41–54.
  • J. Xu, L. Lian, C. Wu, X-F. Wang, W-Y. Fu, L-H. Xu, Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice, Food and Chemical Toxicology 46 (5) (2008) 1488–1494.
  • G. M. Abdallah, M. El Sayed, O. M. Abo-Salem, Effect of lead toxicity on coenzyme Q levels in rat tissues, Food and Chemical Toxicology 48 (6) (2010) 1753–1756.
  • H. Zhang, K. Wei, M. Zhang, L. Liu, Y. Chen, Assessing the mechanism of DNA damage induced by lead through direct and indirect interactions, Journal of Photochemistry and Photobiology B: Biology 136 (2014) 46–53.
  • K. Nemsadze, T. Sanikidze, L. Ratiani, L. Gabunia, T. Sharashenidze, Mechanisms of lead-induced poisoning, Georgian Medicinal News 172-173 (2009) 92–96.
  • M. B. Virgolini, M. Aschner, Molecular mechanisms of lead neurotoxicity, Advances in Neurotoxicology 5 (2021) 159–213.
  • A. Akyasan, O. Özbek, H. Akbaş, Ö. Işıldak, Protic ionic liquid based potentiometric sensors: High selectivity detection of silver (I) ions, ChemistrySelect 10 (3) (2025) e202405507.
  • M. Elik, A. A. Kogu, O. Özbek, M. B. Gürdere, Thiosemicarbazone–based highly selective potentiometric sensor for the determination of copper (II) ions, Results in Surfaces and Interfaces 18 (2025) 100464
  • J. Ding, W. Qin, Recent advances in potentiometric biosensors, TrAC Trends in Analytical Chemistry 124 (2020) 115803.
  • P. Bühlmann, L. D. Chen, Ion-selective electrodes with ionophore-doped sensing membranes, Supramolecular Chemistry: From Molecules to NanomaterialsSons (2012).
  • K. Berkil Akar, Evaluation of alizarin and purpurin dyes for their ability to visualize latent fingermark on porous surfaces, Science & Justice 61 (2) (2021) 130–141.
  • O. Özbek, O. C. Altunoluk, Ö. Isildak, Surface characterization and electroanalytical applications of the newly developed copper (II)-selective potentiometric sensor, Analytical Sciences 40 (2024) 141–149.
  • O. Özbek, O. C. Altunoluk, Ö. Isildak, Novel solid contact ion selective sensor for potentiometric analysis of barium ions, Journal of the Turkish Chemical Society Section B: Chemical Engineering 8 (1) (2025) 1–10.
  • I. Isildak, M. Yolcu, O. Isildak, N. Demirel, G. Topal, H. Hosgoren, All-solid-state PVC membrane Ag+-selective electrodes based on diaza-18-crown-6 compounds, Microchimica Acta 144 (2004) 177–181.
  • R. P. Buck, E. Lindner, Recommendations for nomenclature of ion-selective electrodes, Pure and Applied Chemistry 66 (1994) 2527–2536.
  • Y. Umezawa, P. Buhlmann, K. Umezawa, K. Tohda, S. Amemiya, Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic Cations, Pure Appl. Chem 72 (2000) 1851–2082.
  • J. E. Vilasó-Cadre, D. Benítez-Fernández, I. A. López-Álvarez, F. Y. Tovar-Vázquez, M. A. Arada-Pérez, I.A. Reyes-Domínguez, Acid-base potentiometric titration using a stainless-steel electrode without oxidative treatment, Turkish Journal of Chemistry 47 (2023) 801–813.
  • Á. Golcs, V. Horváth, P. Huszthy, T. Tóth, Fast potentiometric analysis of lead in aqueous medium under competitive conditions using an acridono-crown ether neutral ionophore, Sensors 18 (5) (2018) 1407.
  • O. Özbek, E. Kalay, C. Berkel, O. N. Aslan, F. S. Tokalı, Synthesis, characterization and sensor properties of a new sulfonyl hydrazone derivative molecule: Potentiometric determination of Pb (II) ions, Chemical Papers 78 (2024) 2621–2633.
  • W. Song, C. Wu, H. Yin, X. Liu, P. Sa, J. Hu, Preparation of PbS nanoparticles by phasetransfer method and application to Pb2+-selective electrode based on PVC membrane, Analytical Letters 41 (2008) 2844–2859.
  • O. Özbek, A novel potentiometric sensor for the determination of Pb (II) Ions based on a carbothioamide derivative in PVC matrix, Journal of the Turkish Chemical Society Section A: Chemistry 9 (3) (2022) 651–662.
  • B. Doğan, B. Çağlar, C. Topcu, F. Çoldur, A. O. Özdemir, E. Keleş Güner, O. Çubuk, K. V. Özdokur, All-solid-state composite lead (II)-selective potentiometric electrode based on clay, Sinop University Journal of Natural Sciences 7 (1) (2022) 8–21.

All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione

Year 2025, Volume: 11 Issue: 1, 53 - 62, 31.03.2025
https://doi.org/10.28979/jarnas.1624994

Abstract

Ion-selective sensors are widely used in routine analysis of ionic species. In this research, a highly selective potentiometric sensor was developed, which is sensitive against Pb2+ ions compared to other common inorganic cations. The optimum composition of the developed sensor was determined to be as 3.0% ionophore, 64.0% bis(2–ethylhexyl)adipate (DEHA), 32.0% poly (vinyl chloride) (PVC), and 1.0% anion excluder (KTpClPB). The Pb2+–selective sensor had a Nernstian response of 28.7±2.2 mV/decade over a wide linear range of 1.0×10-5–1.0×10-1 M and a low detection limit of 2.77×10-6 M. The newly developed sensor worked over a wide pH range (4.0–10.0), and the response time was short (7s). The sensor, which had good reproducibility, was applied to various water samples and determined Pb2+ ions with very high recoveries.

References

  • M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. R. Khazdair, M. Sadeghi, Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic, Frontiers in Pharmacology 12 (2021) 643972.
  • C. L. M. Joseph, S. Havstad, D. R. Ownby, E. L. Peterson, M. Maliarik, M. J. McCabe, C. Barone, C. C. Johnson, Blood lead level and risk of asthma, Environmental Health Perspectives 113 (7) (2005) 900–904.
  • D. E. Jacobs, J. Wilson, S. L. Dixon, J. Smith, A. Evens, The relationship of housing and population health: A 30-year retrospective analysis, Environmental Health Perspectives 117 (4) (2009) 597–604.
  • S. Kianoush, M. Balali-Mood, S. R. Mousavi, V. Moradi, M. Sadeghi, B. Dadpour, O. Rajabi, M. T. Shakeri, Comparison of therapeutic effects of garlic and d-penicillamine in patients with chronic occupational lead poisoning, Basic and Clinical Pharmacology & Toxicology 110 (2012) 476–481.
  • K. P. Olympio, C. Gonçalves, W. M. Günther, E. J. Bechara, Neurotoxicity and aggressiveness triggered by low-level Lead in children: A review, Revista Panamericana de Salud Pública 26 (3) (2009) 266–275.
  • J. Kasten-Jolly, Y. Heo, D. A. Lawrence, Central nervous system cytokine gene expression: Modulation by lead, Journal of Biochemical and Molecular Toxicology 25 (1) (2011) 41–54.
  • J. Xu, L. Lian, C. Wu, X-F. Wang, W-Y. Fu, L-H. Xu, Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice, Food and Chemical Toxicology 46 (5) (2008) 1488–1494.
  • G. M. Abdallah, M. El Sayed, O. M. Abo-Salem, Effect of lead toxicity on coenzyme Q levels in rat tissues, Food and Chemical Toxicology 48 (6) (2010) 1753–1756.
  • H. Zhang, K. Wei, M. Zhang, L. Liu, Y. Chen, Assessing the mechanism of DNA damage induced by lead through direct and indirect interactions, Journal of Photochemistry and Photobiology B: Biology 136 (2014) 46–53.
  • K. Nemsadze, T. Sanikidze, L. Ratiani, L. Gabunia, T. Sharashenidze, Mechanisms of lead-induced poisoning, Georgian Medicinal News 172-173 (2009) 92–96.
  • M. B. Virgolini, M. Aschner, Molecular mechanisms of lead neurotoxicity, Advances in Neurotoxicology 5 (2021) 159–213.
  • A. Akyasan, O. Özbek, H. Akbaş, Ö. Işıldak, Protic ionic liquid based potentiometric sensors: High selectivity detection of silver (I) ions, ChemistrySelect 10 (3) (2025) e202405507.
  • M. Elik, A. A. Kogu, O. Özbek, M. B. Gürdere, Thiosemicarbazone–based highly selective potentiometric sensor for the determination of copper (II) ions, Results in Surfaces and Interfaces 18 (2025) 100464
  • J. Ding, W. Qin, Recent advances in potentiometric biosensors, TrAC Trends in Analytical Chemistry 124 (2020) 115803.
  • P. Bühlmann, L. D. Chen, Ion-selective electrodes with ionophore-doped sensing membranes, Supramolecular Chemistry: From Molecules to NanomaterialsSons (2012).
  • K. Berkil Akar, Evaluation of alizarin and purpurin dyes for their ability to visualize latent fingermark on porous surfaces, Science & Justice 61 (2) (2021) 130–141.
  • O. Özbek, O. C. Altunoluk, Ö. Isildak, Surface characterization and electroanalytical applications of the newly developed copper (II)-selective potentiometric sensor, Analytical Sciences 40 (2024) 141–149.
  • O. Özbek, O. C. Altunoluk, Ö. Isildak, Novel solid contact ion selective sensor for potentiometric analysis of barium ions, Journal of the Turkish Chemical Society Section B: Chemical Engineering 8 (1) (2025) 1–10.
  • I. Isildak, M. Yolcu, O. Isildak, N. Demirel, G. Topal, H. Hosgoren, All-solid-state PVC membrane Ag+-selective electrodes based on diaza-18-crown-6 compounds, Microchimica Acta 144 (2004) 177–181.
  • R. P. Buck, E. Lindner, Recommendations for nomenclature of ion-selective electrodes, Pure and Applied Chemistry 66 (1994) 2527–2536.
  • Y. Umezawa, P. Buhlmann, K. Umezawa, K. Tohda, S. Amemiya, Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic Cations, Pure Appl. Chem 72 (2000) 1851–2082.
  • J. E. Vilasó-Cadre, D. Benítez-Fernández, I. A. López-Álvarez, F. Y. Tovar-Vázquez, M. A. Arada-Pérez, I.A. Reyes-Domínguez, Acid-base potentiometric titration using a stainless-steel electrode without oxidative treatment, Turkish Journal of Chemistry 47 (2023) 801–813.
  • Á. Golcs, V. Horváth, P. Huszthy, T. Tóth, Fast potentiometric analysis of lead in aqueous medium under competitive conditions using an acridono-crown ether neutral ionophore, Sensors 18 (5) (2018) 1407.
  • O. Özbek, E. Kalay, C. Berkel, O. N. Aslan, F. S. Tokalı, Synthesis, characterization and sensor properties of a new sulfonyl hydrazone derivative molecule: Potentiometric determination of Pb (II) ions, Chemical Papers 78 (2024) 2621–2633.
  • W. Song, C. Wu, H. Yin, X. Liu, P. Sa, J. Hu, Preparation of PbS nanoparticles by phasetransfer method and application to Pb2+-selective electrode based on PVC membrane, Analytical Letters 41 (2008) 2844–2859.
  • O. Özbek, A novel potentiometric sensor for the determination of Pb (II) Ions based on a carbothioamide derivative in PVC matrix, Journal of the Turkish Chemical Society Section A: Chemistry 9 (3) (2022) 651–662.
  • B. Doğan, B. Çağlar, C. Topcu, F. Çoldur, A. O. Özdemir, E. Keleş Güner, O. Çubuk, K. V. Özdokur, All-solid-state composite lead (II)-selective potentiometric electrode based on clay, Sinop University Journal of Natural Sciences 7 (1) (2022) 8–21.
There are 27 citations in total.

Details

Primary Language English
Subjects Sensor Technology
Journal Section Research Article
Authors

Abdulkadir Akyasan 0009-0000-6474-6483

Oğuz Özbek 0000-0001-5185-9681

Kıymet Berkil Akar 0000-0001-9993-9541

Ömer Işıldak 0000-0003-4690-4323

Publication Date March 31, 2025
Submission Date January 22, 2025
Acceptance Date March 13, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Akyasan, A., Özbek, O., Berkil Akar, K., Işıldak, Ö. (2025). All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione. Journal of Advanced Research in Natural and Applied Sciences, 11(1), 53-62. https://doi.org/10.28979/jarnas.1624994
AMA Akyasan A, Özbek O, Berkil Akar K, Işıldak Ö. All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione. JARNAS. March 2025;11(1):53-62. doi:10.28979/jarnas.1624994
Chicago Akyasan, Abdulkadir, Oğuz Özbek, Kıymet Berkil Akar, and Ömer Işıldak. “All-Solid-State Lead(II)–Selective Potentiometric Sensor Based on 9,10-Dibromo-2-(propylthio)anthracene-1,4-Dione”. Journal of Advanced Research in Natural and Applied Sciences 11, no. 1 (March 2025): 53-62. https://doi.org/10.28979/jarnas.1624994.
EndNote Akyasan A, Özbek O, Berkil Akar K, Işıldak Ö (March 1, 2025) All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione. Journal of Advanced Research in Natural and Applied Sciences 11 1 53–62.
IEEE A. Akyasan, O. Özbek, K. Berkil Akar, and Ö. Işıldak, “All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione”, JARNAS, vol. 11, no. 1, pp. 53–62, 2025, doi: 10.28979/jarnas.1624994.
ISNAD Akyasan, Abdulkadir et al. “All-Solid-State Lead(II)–Selective Potentiometric Sensor Based on 9,10-Dibromo-2-(propylthio)anthracene-1,4-Dione”. Journal of Advanced Research in Natural and Applied Sciences 11/1 (March 2025), 53-62. https://doi.org/10.28979/jarnas.1624994.
JAMA Akyasan A, Özbek O, Berkil Akar K, Işıldak Ö. All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione. JARNAS. 2025;11:53–62.
MLA Akyasan, Abdulkadir et al. “All-Solid-State Lead(II)–Selective Potentiometric Sensor Based on 9,10-Dibromo-2-(propylthio)anthracene-1,4-Dione”. Journal of Advanced Research in Natural and Applied Sciences, vol. 11, no. 1, 2025, pp. 53-62, doi:10.28979/jarnas.1624994.
Vancouver Akyasan A, Özbek O, Berkil Akar K, Işıldak Ö. All-solid-state Lead(II)–Selective Potentiometric Sensor Based on 9,10-dibromo-2-(propylthio)anthracene-1,4-dione. JARNAS. 2025;11(1):53-62.


TR Dizin 20466


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).