Research Article
BibTex RIS Cite
Year 2025, Volume: 11 Issue: 2, 117 - 131, 30.06.2025
https://doi.org/10.28979/jarnas.1652484

Abstract

References

  • I. Gibson, D. Rosen, B. Stucker, M. Khorasani, D. Rosen, B. Stucker, M. Khorasani. Additive Manufacturing Technologies, 17 (2021).
  • C. İ. Çalışkan, Ü. Arpacıoğlu. Additive manufacturing on the façade: functional use of direct metal laser sintering hatch distance process parameters in building envelope, Rapid Prototyping Journal 28 (9) (2022) 1808–1820.
  • K. V Wong, A. Hernandez. A review of additive manufacturing, International Scholarly Research Notices 2012 (1) (2012) 208760.
  • W. E. Frazier. Metal additive manufacturing: a review, Journal of Materials Engineering and Performance 23 (2014) 1917–1928.
  • C. Zhang, S. Wang, J. Li, Y. Zhu, T. Peng, H. Yang. Additive manufacturing of products with functional fluid channels: A review, Additive Manufacturing 36 (2020) 101490.
  • B. B. Kanbur, Y. Zhou, S. Shen, K. H. Wong, C. Chen, A. Shocket, F. Duan. Metal additive manufacturing of plastic injection molds with conformal cooling channels, Polymers 14 (3) (2022) 424.
  • Y. Li, S. Roux, C. Castelain, Y. Fan, L. Luo. Design and optimization of heat sinks for the liquid cooling of electronics with multiple heat sources: A literature review, Energies 16 (22) (2023) 7468.
  • V. K. Lee, D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, P. A. Vincent, G. Dai. Creating perfused functional vascular channels using 3D bio-printing technology, Biomaterials 35 (28) (2014) 8092–8102.
  • S. A. Niknam, M. Mortazavi, D. Li. Additively manufactured heat exchangers: A review on opportunities and challenges, The International Journal of Advanced Manufacturing Technology 112 (3) (2021) 601–618.
  • S. Feng, A. M. Kamat, Y. Pei. Design and fabrication of conformal cooling channels in molds: Review and progress updates, International Journal of Heat and Mass Transfer 171 (2021) 121082.
  • D. Tomasoni, S. Colosio, L. Giorleo, E. Ceretti. Design for additive manufacturing: Thermoforming mold optimization via conformal cooling channel technology, Procedia Manufacturing 47 (2020) 1117–1122.
  • B. B. Kanbur, S. Suping, F. Duan. Design and optimization of conformal cooling channels for injection molding: A review, The International Journal of Advanced Manufacturing Technology 106 (7) (2020) 3253–3271.
  • G. S. Phull, S. Kumar, R. S. Walia. Conformal cooling for molds produced by additive manufacturing: A review, International Journal of Mechanical Engineering and Technology 9 (1) (2018) 1162–1172.
  • C. İ. Çalışkan, G. Özer, E. Koç, U. S. Sarıtaş, C. F. Yıldız, Ö. Y. Çiçek. Efficiency research of conformal channel geometries produced by additive manufacturing in plastic injection mold cores (inserts) used in automotive industry, 3D Printing and Additive Manufacturing 10 (2) (2023) 213–225.
  • D. Li, H. Wang, N. Dai. A novel design model of flow channel paths for additive manufacturing, Rapid Prototyping Journal 30 (6) (2024) 1230–1248.
  • C. İ. Çalışkan, A. Koca, G. Özer, Ö. Akbal, S. Bakır. Efficiency comparison of conformal cooling channels produced by additive and subtractive manufacturing in automotive industry plastic injection moulds: A hybrid application, The International Journal of Advanced Manufacturing Technology 126 (9) (2023) 4419–4437.
  • Y. Wang, C. Lee. Design and optimization of conformal cooling channels for increasing cooling efficiency in injection molding, Applied Sciences 13 (13) (2023) 7437.
  • S. Feng, A. M. Kamat, Y. Pei. Design and fabrication of conformal cooling channels in molds: Review and progress updates, International Journal of Heat and Mass Transfer 171 (2021) 121082.
  • C. İ. Çalışkan, G. Özer, M. Coşkun, E. Koç. Investigation of direct metal laser sintering downskin parameters' sagging effect on microchannels, The International Journal of Advanced Manufacturing Technology 114 (2021) 2567–2575.
  • C. Tan, D. Wang, W. Ma, Y. Chen, S. Chen, Y. Yang, K. Zhou. Design and additive manufacturing of novel conformal cooling molds, Materials and Design 196 (2020) 109147.
  • W. Heogh, S. M. Yeon, D.-S. Kang, S. Park, S. Park, K. Ryu, J. Sun, L. Ji, Y. Son, K. Choi. The design and additive manufacturing of an eco-friendly mold utilized for high productivity based on conformal cooling optimization, Materials and Design 222 (2022) 111088.
  • T. Bulsiewicz, P. Łapka. Effects of additive manufacturing on convective heat transfer in 3D-printed micro/mini-channels and fluid passages with micro/mini structures–The review, International Communications in Heat and Mass Transfer 159 (2024) 108057.
  • Y. Zhu, D. Li, C. Zhang, F. Lin, M. Wu, Y. Chen. Abrasive flow machining of laser powder bed fusion fabricated mini-channels: Modelling and verification, Journal of Manufacturing Processes 141 (2025) 36–47.
  • X. Xu, E. Sachs, S. Allen, M. Cima, Designing conformal cooling channels for tooling, in: D.L.Bourell, J.Beaman, R.Crawford, H. L. Marcus, J.W. Barlow (Eds.), International Solid Freeform Fabrication Symposium, Texas, 1998, pp. 131-146.
  • Z. Shayfull, S. Sharif, A. M. Zain, M. F. Ghazali, R. M. Saad. Potential of conformal cooling channels in rapid heat cycle molding: A review, Advances in Polymer Technology 33 (1) (2014).
  • S. Feng, A. M. Kamat, Y. Pei. Design and fabrication of conformal cooling channels in molds: Review and progress updates, International Journal of Heat and Mass Transfer 171 (2021) 121082.
  • C. İ. Çalışkan, G. Özer, M. Coşkun, E. Koç. Investigation of direct metal laser sintering downskin parameters' sagging effect on microchannels, The International Journal of Advanced Manufacturing Technology 114 (2021) 2567–2575.
  • C. İ. Çalışkan, M. Coşkun, G. Özer, E. Koç, T. A. Vurkır, G. Yöndem. Investigation of manufacturability and efficiency of micro channels with different geometries produced by direct metal laser sintering, The International Journal of Advanced Manufacturing Technology 117 (11) (2021) 3805–3817.
  • Crucible Industrial Design. Crucible, Design Guidelines for DMLS (2014), https://www.scribd.com/document/506752344/A-M-Guidelines-Metal, Accessed 05 Mar 2025.
  • EOS Electro Optical Systems, Design Rules for DMLS (2004), https://www.eos.info/content/blog/how-to-create-differently-with-dmls, Accessed 05 Mar 2025.
  • N. Shamsaei, A. Yadollahi, L. Bian, S. M. Thompson. An overview of direct laser deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Additive Manufacturing 8 (2015) 12–35.
  • EOS GmbH Electro Optical Systems, EOS Aluminium AlSi10Mg Material Data Sheet (2022), https://www.eos.info/var/assets/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/aluminium/material_datasheet_eos_aluminium-alsi10mg_en_web.pdf, Accessed 05 Mar 2025.
  • EOS GmbH Electro Optical Systems, StainlessSteel 316L Material Data Sheet (2022), https://www.eos.info/var/assets/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material- datasheet/stainlesssteel/material_datasheet_eos_stainlesssteel_316l_en_web.pdf,Accessed 05 Mar 2025.
  • EOS GmbH Electro Optical Systems, Titanium Ti64 Material Data Sheet (2022) https://www.eos.info/var/assets/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/titan/ti64/eos_ti64_9011-0014_9011-0039_m290_mds_06-22_en.pdf, Accessed 05 Mar 2025.

Comparative Study of Surface Roughness in Upskin and Downskin Regions of Conformal Cooling Channel Sections Fabricated with AlSi10Mg, Ti64, 316L in AM-LPBF

Year 2025, Volume: 11 Issue: 2, 117 - 131, 30.06.2025
https://doi.org/10.28979/jarnas.1652484

Abstract

Conformal cooling channel (CCC), used in many industries such as aviation, molding, biomedical, and robotics, refers to functional fluid channels that provide mass or energy transfer. CCC, which can be produced in limited forms where liquid flow cannot be fully achieved in traditional production technologies, is among the areas where additive manufacturing (AM) offers design freedom. However, in design-integrated CCC productions, sagging and deformation in the pipe section caused by the AM production process and design parameters can cause a decrease in the performance expected from the CCC and cause unpredictable flow problems. The producible CCC section from research constitutes the scope of this study. In this study, the production of cylindrical test specimens with eleven channel cross-sections between 0,4 mm and 9 mm using laser powder bed fusion (LPBF) technology using AlSi10Mg, 316L, and Ti64 materials and the roughness measurements of the upskin and downskin regions and the scanning electron microscope (SEM) examination are comparatively discussed. Inconsistent results were obtained in the surface roughness measurements of the 0,4 mm and 0,5 mm diameter holes considered within the scope of the research due to the diameter being below the production limits. This research shows that surface roughness in the upskin parameter region is more acceptable in all material types. In the laboratory measurements obtained, it is seen that the downskin region surface roughness value in the holes produced with AlSi10Mg is higher than other materials, and it is lower in the holes produced with Ti64 than other materials.

References

  • I. Gibson, D. Rosen, B. Stucker, M. Khorasani, D. Rosen, B. Stucker, M. Khorasani. Additive Manufacturing Technologies, 17 (2021).
  • C. İ. Çalışkan, Ü. Arpacıoğlu. Additive manufacturing on the façade: functional use of direct metal laser sintering hatch distance process parameters in building envelope, Rapid Prototyping Journal 28 (9) (2022) 1808–1820.
  • K. V Wong, A. Hernandez. A review of additive manufacturing, International Scholarly Research Notices 2012 (1) (2012) 208760.
  • W. E. Frazier. Metal additive manufacturing: a review, Journal of Materials Engineering and Performance 23 (2014) 1917–1928.
  • C. Zhang, S. Wang, J. Li, Y. Zhu, T. Peng, H. Yang. Additive manufacturing of products with functional fluid channels: A review, Additive Manufacturing 36 (2020) 101490.
  • B. B. Kanbur, Y. Zhou, S. Shen, K. H. Wong, C. Chen, A. Shocket, F. Duan. Metal additive manufacturing of plastic injection molds with conformal cooling channels, Polymers 14 (3) (2022) 424.
  • Y. Li, S. Roux, C. Castelain, Y. Fan, L. Luo. Design and optimization of heat sinks for the liquid cooling of electronics with multiple heat sources: A literature review, Energies 16 (22) (2023) 7468.
  • V. K. Lee, D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, P. A. Vincent, G. Dai. Creating perfused functional vascular channels using 3D bio-printing technology, Biomaterials 35 (28) (2014) 8092–8102.
  • S. A. Niknam, M. Mortazavi, D. Li. Additively manufactured heat exchangers: A review on opportunities and challenges, The International Journal of Advanced Manufacturing Technology 112 (3) (2021) 601–618.
  • S. Feng, A. M. Kamat, Y. Pei. Design and fabrication of conformal cooling channels in molds: Review and progress updates, International Journal of Heat and Mass Transfer 171 (2021) 121082.
  • D. Tomasoni, S. Colosio, L. Giorleo, E. Ceretti. Design for additive manufacturing: Thermoforming mold optimization via conformal cooling channel technology, Procedia Manufacturing 47 (2020) 1117–1122.
  • B. B. Kanbur, S. Suping, F. Duan. Design and optimization of conformal cooling channels for injection molding: A review, The International Journal of Advanced Manufacturing Technology 106 (7) (2020) 3253–3271.
  • G. S. Phull, S. Kumar, R. S. Walia. Conformal cooling for molds produced by additive manufacturing: A review, International Journal of Mechanical Engineering and Technology 9 (1) (2018) 1162–1172.
  • C. İ. Çalışkan, G. Özer, E. Koç, U. S. Sarıtaş, C. F. Yıldız, Ö. Y. Çiçek. Efficiency research of conformal channel geometries produced by additive manufacturing in plastic injection mold cores (inserts) used in automotive industry, 3D Printing and Additive Manufacturing 10 (2) (2023) 213–225.
  • D. Li, H. Wang, N. Dai. A novel design model of flow channel paths for additive manufacturing, Rapid Prototyping Journal 30 (6) (2024) 1230–1248.
  • C. İ. Çalışkan, A. Koca, G. Özer, Ö. Akbal, S. Bakır. Efficiency comparison of conformal cooling channels produced by additive and subtractive manufacturing in automotive industry plastic injection moulds: A hybrid application, The International Journal of Advanced Manufacturing Technology 126 (9) (2023) 4419–4437.
  • Y. Wang, C. Lee. Design and optimization of conformal cooling channels for increasing cooling efficiency in injection molding, Applied Sciences 13 (13) (2023) 7437.
  • S. Feng, A. M. Kamat, Y. Pei. Design and fabrication of conformal cooling channels in molds: Review and progress updates, International Journal of Heat and Mass Transfer 171 (2021) 121082.
  • C. İ. Çalışkan, G. Özer, M. Coşkun, E. Koç. Investigation of direct metal laser sintering downskin parameters' sagging effect on microchannels, The International Journal of Advanced Manufacturing Technology 114 (2021) 2567–2575.
  • C. Tan, D. Wang, W. Ma, Y. Chen, S. Chen, Y. Yang, K. Zhou. Design and additive manufacturing of novel conformal cooling molds, Materials and Design 196 (2020) 109147.
  • W. Heogh, S. M. Yeon, D.-S. Kang, S. Park, S. Park, K. Ryu, J. Sun, L. Ji, Y. Son, K. Choi. The design and additive manufacturing of an eco-friendly mold utilized for high productivity based on conformal cooling optimization, Materials and Design 222 (2022) 111088.
  • T. Bulsiewicz, P. Łapka. Effects of additive manufacturing on convective heat transfer in 3D-printed micro/mini-channels and fluid passages with micro/mini structures–The review, International Communications in Heat and Mass Transfer 159 (2024) 108057.
  • Y. Zhu, D. Li, C. Zhang, F. Lin, M. Wu, Y. Chen. Abrasive flow machining of laser powder bed fusion fabricated mini-channels: Modelling and verification, Journal of Manufacturing Processes 141 (2025) 36–47.
  • X. Xu, E. Sachs, S. Allen, M. Cima, Designing conformal cooling channels for tooling, in: D.L.Bourell, J.Beaman, R.Crawford, H. L. Marcus, J.W. Barlow (Eds.), International Solid Freeform Fabrication Symposium, Texas, 1998, pp. 131-146.
  • Z. Shayfull, S. Sharif, A. M. Zain, M. F. Ghazali, R. M. Saad. Potential of conformal cooling channels in rapid heat cycle molding: A review, Advances in Polymer Technology 33 (1) (2014).
  • S. Feng, A. M. Kamat, Y. Pei. Design and fabrication of conformal cooling channels in molds: Review and progress updates, International Journal of Heat and Mass Transfer 171 (2021) 121082.
  • C. İ. Çalışkan, G. Özer, M. Coşkun, E. Koç. Investigation of direct metal laser sintering downskin parameters' sagging effect on microchannels, The International Journal of Advanced Manufacturing Technology 114 (2021) 2567–2575.
  • C. İ. Çalışkan, M. Coşkun, G. Özer, E. Koç, T. A. Vurkır, G. Yöndem. Investigation of manufacturability and efficiency of micro channels with different geometries produced by direct metal laser sintering, The International Journal of Advanced Manufacturing Technology 117 (11) (2021) 3805–3817.
  • Crucible Industrial Design. Crucible, Design Guidelines for DMLS (2014), https://www.scribd.com/document/506752344/A-M-Guidelines-Metal, Accessed 05 Mar 2025.
  • EOS Electro Optical Systems, Design Rules for DMLS (2004), https://www.eos.info/content/blog/how-to-create-differently-with-dmls, Accessed 05 Mar 2025.
  • N. Shamsaei, A. Yadollahi, L. Bian, S. M. Thompson. An overview of direct laser deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Additive Manufacturing 8 (2015) 12–35.
  • EOS GmbH Electro Optical Systems, EOS Aluminium AlSi10Mg Material Data Sheet (2022), https://www.eos.info/var/assets/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/aluminium/material_datasheet_eos_aluminium-alsi10mg_en_web.pdf, Accessed 05 Mar 2025.
  • EOS GmbH Electro Optical Systems, StainlessSteel 316L Material Data Sheet (2022), https://www.eos.info/var/assets/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material- datasheet/stainlesssteel/material_datasheet_eos_stainlesssteel_316l_en_web.pdf,Accessed 05 Mar 2025.
  • EOS GmbH Electro Optical Systems, Titanium Ti64 Material Data Sheet (2022) https://www.eos.info/var/assets/03_system-related-assets/material-related-contents/metal-materials-and-examples/metal-material-datasheet/titan/ti64/eos_ti64_9011-0014_9011-0039_m290_mds_06-22_en.pdf, Accessed 05 Mar 2025.
There are 34 citations in total.

Details

Primary Language English
Subjects Metals and Alloy Materials
Journal Section Research Article
Authors

Cemal İrfan Çalışkan 0000-0003-0366-7698

Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date March 6, 2025
Acceptance Date April 13, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

APA Çalışkan, C. İ. (2025). Comparative Study of Surface Roughness in Upskin and Downskin Regions of Conformal Cooling Channel Sections Fabricated with AlSi10Mg, Ti64, 316L in AM-LPBF. Journal of Advanced Research in Natural and Applied Sciences, 11(2), 117-131. https://doi.org/10.28979/jarnas.1652484
AMA Çalışkan Cİ. Comparative Study of Surface Roughness in Upskin and Downskin Regions of Conformal Cooling Channel Sections Fabricated with AlSi10Mg, Ti64, 316L in AM-LPBF. JARNAS. June 2025;11(2):117-131. doi:10.28979/jarnas.1652484
Chicago Çalışkan, Cemal İrfan. “Comparative Study of Surface Roughness in Upskin and Downskin Regions of Conformal Cooling Channel Sections Fabricated With AlSi10Mg, Ti64, 316L in AM-LPBF”. Journal of Advanced Research in Natural and Applied Sciences 11, no. 2 (June 2025): 117-31. https://doi.org/10.28979/jarnas.1652484.
EndNote Çalışkan Cİ (June 1, 2025) Comparative Study of Surface Roughness in Upskin and Downskin Regions of Conformal Cooling Channel Sections Fabricated with AlSi10Mg, Ti64, 316L in AM-LPBF. Journal of Advanced Research in Natural and Applied Sciences 11 2 117–131.
IEEE C. İ. Çalışkan, “Comparative Study of Surface Roughness in Upskin and Downskin Regions of Conformal Cooling Channel Sections Fabricated with AlSi10Mg, Ti64, 316L in AM-LPBF”, JARNAS, vol. 11, no. 2, pp. 117–131, 2025, doi: 10.28979/jarnas.1652484.
ISNAD Çalışkan, Cemal İrfan. “Comparative Study of Surface Roughness in Upskin and Downskin Regions of Conformal Cooling Channel Sections Fabricated With AlSi10Mg, Ti64, 316L in AM-LPBF”. Journal of Advanced Research in Natural and Applied Sciences 11/2 (June 2025), 117-131. https://doi.org/10.28979/jarnas.1652484.
JAMA Çalışkan Cİ. Comparative Study of Surface Roughness in Upskin and Downskin Regions of Conformal Cooling Channel Sections Fabricated with AlSi10Mg, Ti64, 316L in AM-LPBF. JARNAS. 2025;11:117–131.
MLA Çalışkan, Cemal İrfan. “Comparative Study of Surface Roughness in Upskin and Downskin Regions of Conformal Cooling Channel Sections Fabricated With AlSi10Mg, Ti64, 316L in AM-LPBF”. Journal of Advanced Research in Natural and Applied Sciences, vol. 11, no. 2, 2025, pp. 117-31, doi:10.28979/jarnas.1652484.
Vancouver Çalışkan Cİ. Comparative Study of Surface Roughness in Upskin and Downskin Regions of Conformal Cooling Channel Sections Fabricated with AlSi10Mg, Ti64, 316L in AM-LPBF. JARNAS. 2025;11(2):117-31.


TR Dizin 20466


SAO/NASA Astrophysics Data System (ADS)    34270

                                                   American Chemical Society-Chemical Abstracts Service CAS    34922 


DOAJ 32869

EBSCO 32870

Scilit 30371                        

SOBİAD 20460


29804 JARNAS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).