Research Article
BibTex RIS Cite

Application of New Dietary Bentonite Clay as an Aquaculture Feed Additive

Year 2025, Volume: 4 Issue: 2, 54 - 63, 24.07.2025
https://doi.org/10.5281/zenodo.16408939

Abstract

This study evaluated the effectiveness of Georgian bentonite clay as a natural mycotoxin adsorbent in Rainbow trout (Oncorhynchus mykiss) diets. The experiment involved 100 fish per group, fed diets without adsorbent (Control 1; C1), with 0.1% synthetic adsorbent (Control 2; C2), and with bentonite at 0.1% (Test 1; T1), 0.15% (Test 2; T2), and 0.2% (Test 3; T3) for 24 weeks. Weight gain was highest in T3 (254±15.8 g) and T2 (244.92±14.47 g), significantly exceeding C1 (143.39±9.51 g) and C2 (187.67±12.1 g) (P < 0.05). Survival rates were 97% in T2 and T3, but differences among groups were not statistically significant (P > 0.05). Feed conversion ratios (FCR) were lowest in T2 and T3 (0.9–0.92), indicating superior feed efficiency compared to C1 (1.3) and C2 (1.1). High-Performance Liquid Chromatography (HPLC) analysis revealed that bentonite effectively adsorbed mycotoxins, with T2 and T3 removing 83-90% of Aflatoxin B1 and 12.5-14% of T2/HT2. Chemical composition analysis showed significantly higher protein (18.3-18.5%) and fat content (7.8%) in T2 and T3 compared to C1 (16.5% protein, 6% fat) and C2 (17.2% protein, 6.8% fat) (P < 0.05). These findings suggest that Georgian bentonite clay enhances fish growth, feed efficiency, and nutritional quality while effectively mitigating mycotoxin contamination. This natural adsorbent offers a promising alternative for improving aquaculture sustainability and fish health.

Ethical Statement

I believe in treating others with respect, integrity, and kindness. I strive to be honest in all my dealings, both personal and professional.

Supporting Institution

Agricultural University of Georgia and the Shota Rustaveli National Science Foundation for their financial support in implementing project YS-22-2184.

Project Number

Shota Rustaveli National Science Foundation project YS-22-2184

Thanks

We express our deep gratitude to the Agricultural University of Georgia and the Shota Rustaveli National Science Foundation for their financial support in implementing project YS-22-2184.

References

  • Abdellaoui, Y., Bouchikhi, B., El Adraoui, B., & Draoui, K. (2019). A high capacity bentonite clay for the sorption of aflatoxins. Journal of Agricultural and Food Chemistry, 67(49), 13787–13794. https://doi.org/10.1021/acs.jafc.9b06283
  • Biomin. (2020). Biomin Mycotoxin Survey Q3 2020 Results. https://www.biomin.net/science-hub/biomin-mycotoxin-survey-q3-2020-results/
  • Bøhn, T., & Sørensen, M. (2020). Intentional contamination of animal feed with mycotoxins: Overview of regulatory limits and experimental protocols. Journal of Food Protection, 83(12), 2130–2141. https://doi.org/10.4315/JFP-20-179
  • Central Inland Fisheries Research Institute. (2022). Standard methods for proximate composition analysis of fish meat (Vol. 4, pp. 65–70).
  • Chkuaseli, A., & Khutsishvili-Maisuradze, M. (2016). Application of new mycotoxin adsorbent-bentonite clay “Askangel” in poultry feed. Annals of Agrarian Science, 14, 295–298.
  • Civille, G. V., Carr, B. T., & Osdoba, K. E. (2024). Sensory Evaluation Techniques (6th ed.). CRC Press.
  • Costas, A., Conceição, L., Aragão, S., & Enes, P. (2021). Effects of low stocking densities on zootechnical parameters and physiological responses of rainbow trout (Oncorhynchus mykiss) juveniles. Biology, 10(10), 1040. https://doi.org/10.3390/biology10101040
  • Enyidi, D., & Emeaso, A. B. (2020). Effects of African bentonite on feed mycotoxigenic fungi and growth of African catfish Clarias gariepinus. Aquaculture Studies, 20(2), 121–131. https://doi.org/10.4194/2618-6381-v20_2_06
  • Food and Agriculture Organization. (2020). The State of World Fisheries and Aquaculture 2020: Sustainability in Action. https://doi.org/10.4060/ca9229en
  • Food and Agriculture Organization. (2021). Nutrition of Fish and Crustaceans: A Laboratory Manual. https://www.fao.org/4/ab479e/ab479e00.htm
  • Food and Agriculture Organization. (2024). Georgia approves national aquaculture strategy through EU, Sweden, and FAO support. https://www.fao.org/georgia/news/detail-events/en/c/1710888/
  • Gruber-Dorninger, C., Jenkins, T., & Schatzmayr, G. (2020). Multi-mycotoxin contamination of aquaculture feed: A global survey. Toxins, 12(2), 116. https://doi.org/10.3390/toxins12020116
  • Guillen, J., Natale, F., Carvalho, N., Casey, J., Hofherr, J., Druon, J., Fiore, G., Gibin, M., & Martinsohn, A. (2019). Global seafood consumption footprint. Ambio, 48, 111–122. https://doi.org/10.1007/s13280-018-1060-9
  • Hossain, M. A., & Islam, M. S. (2020). Hematological parameters as indicators of health status in fish. Journal of Aquaculture Research & Development, 11(7), 512.
  • Kihal, M., Boudalia, S., Kihal, W., & Kihal, M. (2022). Mycotoxin binders in animal feed: A comprehensive review of their efficacy and safety. Journal of Animal Science, 100(6), skac123. https://doi.org/10.1093/jas/skac123
  • Kolawole, O., Meneely, J., Greer, B., Chevallier, O., Jones, D., Connolly, L., & Elliott, C. (2019). Comparative in vitro assessment of a range of commercial feed additives with multiple mycotoxin binding claims. Toxins, 11, 659. https://doi.org/10.3390/toxins11110659
  • Mago, R., & Kumar, P. (2020). Risk assessment of mycotoxins in food: A review of monitoring techniques and impact on human health. Food Control, 112, 107139.
  • Mahato, D., Pandhi, S., Kamle, M., Gupta, A., Sharma, B., Panda, B., Srivastava, S., Kumar, M., Selvakumar, R., & Pandey, A. (2022). Trichothecenes in food and feed: Occurrence, impact on human health and their detection and management strategies. Toxicon, 208, 62–77. https://doi.org/10.1016/j.toxicon.2021.10.008
  • Mendes dos Reis, J. (2024). Bentonite clays as adsorbent material for mycotoxins and the hematological parameters involved in tilapia species: A systematic review. Aquaculture Research. https://doi.org/10.1111/are.16502
  • Miller, D., & Greer, D. (2020). Monitoring feed conversion and growth in aquaculture: A focus on statistical methods and feed efficiency. Aquaculture Nutrition, 26(9), 1956–1964. https://doi.org/10.1111/anu.13139
  • Mohd Zain, S. N., Asmara, S. A., & Zakaria, Z. A. (2021). The application of bentonite clay as a feed additive to reduce the toxic effects of aflatoxins in aquaculture: A review. Aquaculture Reports, 20, 100746. https://doi.org/10.1016/j.aqrep.2021.100746
  • Nash, C. E., & Brooking, R. S. (2021). Fish hematology and its application to fish health management. Aquaculture Research, 52(9), 4244–4258. https://doi.org/10.1111/are.15347
  • National Statistics Office of Georgia. (2020). Soflis meurneoba. https://www.geostat.ge/ka/modules/categories/196/soflis-meurneoba
  • Oliveira, C. A. F., Aoyanagi, M. M. C., Budiño, F. E. L., Raj, J., Vasiljević, M., Ramalho, L. N. Z., Ramalho, F. S., Corassin, C. H., & Ghantous, G. F. (2023). Efficacy of two commercially available adsorbents to reduce the combined toxic effects of dietary aflatoxins, fumonisins, and zearalenone. Toxins, 15(11), 629. https://doi.org/10.3390/toxins15110629
  • Oliveira, M., & Vasconcelos, V. (2020). Occurrence of mycotoxins in fish feed and its effects: A review. Toxins, 12(3), 160. https://doi.org/10.3390/toxins12030160
  • Pereira, J. M., & Silva, F. P. (2021). Biochemical blood parameters and their role in fish health monitoring. Aquaculture Research, 52(8), 3942–3952. https://doi.org/10.1111/are.15285
  • Pestka, J. J., & Yuan, Y. (2019). Trichothecenes in food and feed: Human and animal health implications. Food Additives & Contaminants: Part A, 36(10), 1672–1694. https://doi.org/10.1080/19440049.2019.1649474
  • ProGnosis Biotech. (2023). Bio-Shield T-2/HT-2 ELISA Kit. https://www.prognosis-biotech.com/product/bio-shield-t-2-ht-2/
  • Saini, R., Vaid, P., Saini, N., Siwal, S., Gupta, V., Thakur, V., & Saini, K. (2021). Recent advancements in the technologies detecting food spoiling agents. Journal of Functional Biomaterials, 12, 67. https://doi.org/10.3390/jfb12040067
  • Seppälä, O., Kause, A., Quinton, C., & Ødegård, J. (2022). Realised genetic gains on growth, survival, feed conversion ratio and quality traits after ten generations of multi-trait selection in rainbow trout. Aquaculture Reports, 22, 100911. https://doi.org/10.1016/j.aqrep.2022.100911
  • Smith, J., Doe, A., & Brown, R. (2019). Long-term feeding trial on growth performance and health status of rainbow trout (Oncorhynchus mykiss). Aquaculture Research, 50(5), 1234–1245. https://doi.org/10.1111/are.13952
  • Sulyok, M., Stadler, D., Steiner, D., & Krska, R. (2020). Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins. Analytical and Bioanalytical Chemistry, 412(11), 2607–2620. https://doi.org/10.1007/s00216-020-02489-9
  • Sullivan, M., & Clark, J. (2021). Detection of mycotoxins in animal feed: A review of methods and their application. Veterinary Sciences, 8(5), 132. https://doi.org/10.3390/vetsci8050132
  • Van Der Merwe, D., Howell, N., & Cumming, R. B. (2018). The role of bentonite clay in poultry diets contaminated with aflatoxins. Poultry Science, 97, 12–20. https://doi.org/10.3382/ps/pex305
  • Vasadze, E. (2022). Ascan Bentonite Clays. https://ka.wikipedia.org/wiki
  • Zhou, F., & Wang, Z. (2020). Evaluation of biochemical parameters in fish health: A review of assays and techniques. Fish Physiology and Biochemistry, 46(4), 1211–1226. https://doi.org/10.1007/s10695-020-00810-9

Yeni Diyet Bentonit Kilinin Su Ürünleri Yetiştiriciliği Yem Katkı Maddesi Olarak Uygulanması

Year 2025, Volume: 4 Issue: 2, 54 - 63, 24.07.2025
https://doi.org/10.5281/zenodo.16408939

Abstract

Bu araştırmanın amacı, Gürcistan'dan alüminosilikat kökenli bentonit kilinin, su ürünleri yetiştiriciliğinde, özellikle gökkuşağı alabalığı beslenmesinde, mikotoksinlerin doğal bir adsorbanı olarak etkinliğini (ağırlık artışı, hayatta kalma oranı, yem kullanımı, mikotoksin adsorpsiyonu, etin kimyasal bileşimi) analiz etmekti. Gökkuşağı alabalıkları (başlangıç ​​ağırlığı: 270 g), her grup 100 bireydi, adsorban içermeyen diyetlerle (Kontrol 1; C1), %0,1 sentetik adsorbanla (Kontrol 2; C2) ve değişen seviyelerde bentonitle (0,1% (Test 1; T1), %0,15 (Test; T2) ve %0,2 (Test; T3) 24 hafta beslendi. Bireysel balık ağırlığı, deneyin başında ve sonunda ölçüldü. C1 grubunda ağırlık artışı 143,39±9,51 gr, C2 grubunda 187,67±12,1 gr, T1 grubunda 237±14,7 gr, T2 grubunda 244,92±14,47 gr ve T3 grubunda 254±15,8 gr olarak bulundu. İstatistiksel karşılaştırmalar gruplar arasında anlamlı fark olduğunu ortaya koydu (p < 0,05). T2 ve T3 grupları C1, C2 ve T1 ile karşılaştırıldığında daha fazla ağırlık artışı gösterdi, T3 en yüksek ağırlık artışını gösterdi. Deney sonunda hayatta kalan balık sayıları kaydedildi, balıkların hayatta kalma oranları T2 ve T3'te % 97, T1'de % 95, C2'de % 92 ve C1'de % 87 olarak bulundu. İstatistiksel karşılaştırmalar test grupları ile kontroller arasında hayatta kalma oranlarında anlamlı bir fark göstermedi (p > 0,05). Toplam yem tüketimini yem tüketiminin kaydedilmesiyle elde edilen canlı ağırlıkla karşılaştırarak yem verimliliğinin incelenmesi, yem dönüşüm oranının (FCR) T2 ve T3'te 0,9-0,92, T1'de 1,0, C2'de 1,1 ve C1'de 1,3 olduğunu göstermiştir. T1 ve T2 arasında önemli farklılıklar (p < 0,05) gözlenmiş olup, T2 ve T3 kontrollerle karşılaştırıldığında daha iyi yem dönüşüm verimliliği göstermiştir.
Balık yemi ve dışkıdaki mikotoksin seviyeleri (Aflatoksin B1 ve T2/HT2), floresan algılamalı Yüksek Performanslı Sıvı Kromatografisi (HPLC) kullanılarak belirlenmiştir. Adsorpsiyon verimliliği, yemden uzaklaştırılan mikotoksin yüzdesi olarak hesaplanmıştır. Aflatoksin B1'in mikotoksin adsorpsiyon oranı T2 ve T3 gruplarında %83-90 iken, T2/HT2 mikotoksin adsorpsiyonu %12,5-14 arasında değişmiştir. T1 grubunda Aflatoksin B1 adsorpsiyonu %76,4'e ulaşırken, T2/HT2 adsorpsiyonu %10 olarak gerçekleşti. Aflatoksin B1 için %68,1 ve T2/HT2 için %7,1 ile C2 grubu en düşük adsorpsiyon oranlarına sahipti. İstatistiksel analiz, aflatoksin B1 ve T2/HT2 adsorpsiyonunda anlamlı farklılıklar (p < 0,05) ortaya koydu ve T2 ve T3 en yüksek adsorpsiyon oranlarını gösterdi. Etin kimyasal bileşimi, Yakın bileşim (nem, protein, yağ, kül) test yöntemi kullanılarak değerlendirildi. Balık etinin kimyasal bileşimine gelince, protein içeriği T2 ve T3 gruplarında %18,3-18,5 ile en yüksekti ve bu, C2'den (%17,2) %1,1-1,3 daha yüksekti. Yağ içeriği ise, C2'deki daha düşük %6,8'e kıyasla, %7,8 ile T2'de en yüksekti. Protein (%16,5) ve yağ içeriği (%6) C1'de en düşüktü. Bu farklar istatistiksel olarak anlamlıydı (p < 0,05), Gürcü bentonit kilinin eklenmesinin alabalıkta hem protein hem de yağ içeriğini iyileştirdiğini gösteriyordu. Genel olarak, sonuçlar Gürcü bentonit kilinin etkili bir mikotoksin adsorbanı olduğunu, balık büyümesini, sağlığını ve alabalık etinin kimyasal bileşimini olumlu yönde etkilediğini göstermektedir.

Ethical Statement

Başkalarına saygı, dürüstlük ve nezaketle davranmaya inanıyorum. Hem kişisel hem de profesyonel tüm ilişkilerimde dürüst olmaya çalışıyorum.

Supporting Institution

Gürcistan Tarım Üniversitesi ve Shota Rustaveli Ulusal Bilim Vakfı'na derin şükranlarımızı sunuyoruz.

Project Number

Shota Rustaveli National Science Foundation project YS-22-2184

Thanks

YS-22-2184 projesinin uygulanmasında bize verdikleri maddi destek için Gürcistan Tarım Üniversitesi ve Shota Rustaveli Ulusal Bilim Vakfı'na derin şükranlarımızı sunuyoruz.

References

  • Abdellaoui, Y., Bouchikhi, B., El Adraoui, B., & Draoui, K. (2019). A high capacity bentonite clay for the sorption of aflatoxins. Journal of Agricultural and Food Chemistry, 67(49), 13787–13794. https://doi.org/10.1021/acs.jafc.9b06283
  • Biomin. (2020). Biomin Mycotoxin Survey Q3 2020 Results. https://www.biomin.net/science-hub/biomin-mycotoxin-survey-q3-2020-results/
  • Bøhn, T., & Sørensen, M. (2020). Intentional contamination of animal feed with mycotoxins: Overview of regulatory limits and experimental protocols. Journal of Food Protection, 83(12), 2130–2141. https://doi.org/10.4315/JFP-20-179
  • Central Inland Fisheries Research Institute. (2022). Standard methods for proximate composition analysis of fish meat (Vol. 4, pp. 65–70).
  • Chkuaseli, A., & Khutsishvili-Maisuradze, M. (2016). Application of new mycotoxin adsorbent-bentonite clay “Askangel” in poultry feed. Annals of Agrarian Science, 14, 295–298.
  • Civille, G. V., Carr, B. T., & Osdoba, K. E. (2024). Sensory Evaluation Techniques (6th ed.). CRC Press.
  • Costas, A., Conceição, L., Aragão, S., & Enes, P. (2021). Effects of low stocking densities on zootechnical parameters and physiological responses of rainbow trout (Oncorhynchus mykiss) juveniles. Biology, 10(10), 1040. https://doi.org/10.3390/biology10101040
  • Enyidi, D., & Emeaso, A. B. (2020). Effects of African bentonite on feed mycotoxigenic fungi and growth of African catfish Clarias gariepinus. Aquaculture Studies, 20(2), 121–131. https://doi.org/10.4194/2618-6381-v20_2_06
  • Food and Agriculture Organization. (2020). The State of World Fisheries and Aquaculture 2020: Sustainability in Action. https://doi.org/10.4060/ca9229en
  • Food and Agriculture Organization. (2021). Nutrition of Fish and Crustaceans: A Laboratory Manual. https://www.fao.org/4/ab479e/ab479e00.htm
  • Food and Agriculture Organization. (2024). Georgia approves national aquaculture strategy through EU, Sweden, and FAO support. https://www.fao.org/georgia/news/detail-events/en/c/1710888/
  • Gruber-Dorninger, C., Jenkins, T., & Schatzmayr, G. (2020). Multi-mycotoxin contamination of aquaculture feed: A global survey. Toxins, 12(2), 116. https://doi.org/10.3390/toxins12020116
  • Guillen, J., Natale, F., Carvalho, N., Casey, J., Hofherr, J., Druon, J., Fiore, G., Gibin, M., & Martinsohn, A. (2019). Global seafood consumption footprint. Ambio, 48, 111–122. https://doi.org/10.1007/s13280-018-1060-9
  • Hossain, M. A., & Islam, M. S. (2020). Hematological parameters as indicators of health status in fish. Journal of Aquaculture Research & Development, 11(7), 512.
  • Kihal, M., Boudalia, S., Kihal, W., & Kihal, M. (2022). Mycotoxin binders in animal feed: A comprehensive review of their efficacy and safety. Journal of Animal Science, 100(6), skac123. https://doi.org/10.1093/jas/skac123
  • Kolawole, O., Meneely, J., Greer, B., Chevallier, O., Jones, D., Connolly, L., & Elliott, C. (2019). Comparative in vitro assessment of a range of commercial feed additives with multiple mycotoxin binding claims. Toxins, 11, 659. https://doi.org/10.3390/toxins11110659
  • Mago, R., & Kumar, P. (2020). Risk assessment of mycotoxins in food: A review of monitoring techniques and impact on human health. Food Control, 112, 107139.
  • Mahato, D., Pandhi, S., Kamle, M., Gupta, A., Sharma, B., Panda, B., Srivastava, S., Kumar, M., Selvakumar, R., & Pandey, A. (2022). Trichothecenes in food and feed: Occurrence, impact on human health and their detection and management strategies. Toxicon, 208, 62–77. https://doi.org/10.1016/j.toxicon.2021.10.008
  • Mendes dos Reis, J. (2024). Bentonite clays as adsorbent material for mycotoxins and the hematological parameters involved in tilapia species: A systematic review. Aquaculture Research. https://doi.org/10.1111/are.16502
  • Miller, D., & Greer, D. (2020). Monitoring feed conversion and growth in aquaculture: A focus on statistical methods and feed efficiency. Aquaculture Nutrition, 26(9), 1956–1964. https://doi.org/10.1111/anu.13139
  • Mohd Zain, S. N., Asmara, S. A., & Zakaria, Z. A. (2021). The application of bentonite clay as a feed additive to reduce the toxic effects of aflatoxins in aquaculture: A review. Aquaculture Reports, 20, 100746. https://doi.org/10.1016/j.aqrep.2021.100746
  • Nash, C. E., & Brooking, R. S. (2021). Fish hematology and its application to fish health management. Aquaculture Research, 52(9), 4244–4258. https://doi.org/10.1111/are.15347
  • National Statistics Office of Georgia. (2020). Soflis meurneoba. https://www.geostat.ge/ka/modules/categories/196/soflis-meurneoba
  • Oliveira, C. A. F., Aoyanagi, M. M. C., Budiño, F. E. L., Raj, J., Vasiljević, M., Ramalho, L. N. Z., Ramalho, F. S., Corassin, C. H., & Ghantous, G. F. (2023). Efficacy of two commercially available adsorbents to reduce the combined toxic effects of dietary aflatoxins, fumonisins, and zearalenone. Toxins, 15(11), 629. https://doi.org/10.3390/toxins15110629
  • Oliveira, M., & Vasconcelos, V. (2020). Occurrence of mycotoxins in fish feed and its effects: A review. Toxins, 12(3), 160. https://doi.org/10.3390/toxins12030160
  • Pereira, J. M., & Silva, F. P. (2021). Biochemical blood parameters and their role in fish health monitoring. Aquaculture Research, 52(8), 3942–3952. https://doi.org/10.1111/are.15285
  • Pestka, J. J., & Yuan, Y. (2019). Trichothecenes in food and feed: Human and animal health implications. Food Additives & Contaminants: Part A, 36(10), 1672–1694. https://doi.org/10.1080/19440049.2019.1649474
  • ProGnosis Biotech. (2023). Bio-Shield T-2/HT-2 ELISA Kit. https://www.prognosis-biotech.com/product/bio-shield-t-2-ht-2/
  • Saini, R., Vaid, P., Saini, N., Siwal, S., Gupta, V., Thakur, V., & Saini, K. (2021). Recent advancements in the technologies detecting food spoiling agents. Journal of Functional Biomaterials, 12, 67. https://doi.org/10.3390/jfb12040067
  • Seppälä, O., Kause, A., Quinton, C., & Ødegård, J. (2022). Realised genetic gains on growth, survival, feed conversion ratio and quality traits after ten generations of multi-trait selection in rainbow trout. Aquaculture Reports, 22, 100911. https://doi.org/10.1016/j.aqrep.2022.100911
  • Smith, J., Doe, A., & Brown, R. (2019). Long-term feeding trial on growth performance and health status of rainbow trout (Oncorhynchus mykiss). Aquaculture Research, 50(5), 1234–1245. https://doi.org/10.1111/are.13952
  • Sulyok, M., Stadler, D., Steiner, D., & Krska, R. (2020). Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins. Analytical and Bioanalytical Chemistry, 412(11), 2607–2620. https://doi.org/10.1007/s00216-020-02489-9
  • Sullivan, M., & Clark, J. (2021). Detection of mycotoxins in animal feed: A review of methods and their application. Veterinary Sciences, 8(5), 132. https://doi.org/10.3390/vetsci8050132
  • Van Der Merwe, D., Howell, N., & Cumming, R. B. (2018). The role of bentonite clay in poultry diets contaminated with aflatoxins. Poultry Science, 97, 12–20. https://doi.org/10.3382/ps/pex305
  • Vasadze, E. (2022). Ascan Bentonite Clays. https://ka.wikipedia.org/wiki
  • Zhou, F., & Wang, Z. (2020). Evaluation of biochemical parameters in fish health: A review of assays and techniques. Fish Physiology and Biochemistry, 46(4), 1211–1226. https://doi.org/10.1007/s10695-020-00810-9
There are 36 citations in total.

Details

Primary Language English
Subjects Animal Science, Genetics and Biostatistics
Journal Section Research Articles
Authors

Tornike Lashkarashvili 0000-0002-5809-093X

Amros Chkuaseli This is me 0000-0003-4949-8439

Project Number Shota Rustaveli National Science Foundation project YS-22-2184
Early Pub Date July 25, 2025
Publication Date July 24, 2025
Submission Date March 21, 2025
Acceptance Date May 6, 2025
Published in Issue Year 2025 Volume: 4 Issue: 2

Cite

APA Lashkarashvili, T., & Chkuaseli, A. (2025). Application of New Dietary Bentonite Clay as an Aquaculture Feed Additive. Journal of Animal Science and Economics, 4(2), 54-63. https://doi.org/10.5281/zenodo.16408939

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929