Research Article
BibTex RIS Cite

Neonikotinoid İnsektisitlerin Bombus (Bombus terrestris L.) Arısı Bireylerinde Hafıza ve Öğrenme Davranışına Etkisi

Year 2024, Volume: 7 Issue: 1, 30 - 41, 30.06.2024
https://doi.org/10.51970/jasp.1444967

Abstract

Gerek polinasyon amacıyla tarımsal üretimde kullanıldığında gerekse doğal yaşam alanlarında çeşitli insektisitlere farklı şekil ve düzeyde maruz kalan arılar beslenme reflekslerini, yön bulma becerilerini kaybedebilir vehatta ölebilirler. İnsektisitlerden neonikotinoid grubunda yer alan Acetamiprid etken maddeli insektisitler tıpkı diğer neonikotinoler gibi arıların yön bulma, öğrenme ve hafıza becerilerini olumsuz etkilemektedir. Bombus terrestris koloni bireyleri (ana, işçi ve erkek arı) koloni yaşam döngüsünün belirli dönemlerinde besin toplama veya çiftleşme gibi farklı amaçlar için koloniden ayrılmakta ve insektisitlere maruz kalabilmektedir. Bu çalışmada, B. terrestris koloni bireylerinden oluşan 5 grup (Grup 1: Çiftleşmemiş genç ana arı grubu, Grup 2: Çiftleşmiş, diyapoz dönemini tamamlamış, ancak yumurtlamamış ana arı grubu, Grup 3: Çiftleşmiş, diyapoz dönemini tamamlamış ve yumurtlamış ana arı grubu, Grup 4: İşçi arı grubu, Grup 5: Erkek arı grubu) Acetamiprid etken maddeli insektisitin (Hekplan®, HEKTAŞ) tavsiye edilen dozunun 5 farklı oranına (0 (kontrol), 1/1000, 1/100, 1/10, 1/1) maruz bırakılmıştır. İnsektisite maruz kalan arıların öğrenme ve hafıza davranışları klasik koşullandırma yöntemi ile belirlenmiştir. Her maruziyet uygulaması için 20 adet olmak üzere toplam 500 adet (5 grup x 5 doz x 20 arı) ergin birey kullanılmıştır. Sonuçlara göre klasik koşullandırma yöntemi uygulanan 3 ana arı grubundaki bireylerin işçi ve erkek arı gruplarındaki bireylere göre hem daha geç öğrenmeye başladığı hem de daha az sayıda bireyin dil çıkarma davranışı sergilediği belirlenmiştir. Hafıza çalışmalarındaki ölçümler öğrenme çalışmasından sonra 1., 2., 6. ve 12. saatlerde yapılmıştır. İnsektisitten en çok etkilenen grupların ana arı grupları olduğu belirlenmiştir. Sonuçlar, Acetamiprid etken maddeli neonikotinoid insektisitin bombus arısı bireylerinin öğrenme ve hafıza yeteneklerini farklı düzeylerde etkilediğini ortaya koymuştur.

Supporting Institution

TÜBİTAK

Thanks

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 2209-A kapsamında desteklenmiştir.

References

  • Beekman, M., van Stratum, P., 2000. Does the diapause experience of bumblebee queens Bombus terrestris affect colony characteristics?. Ecological Entomology. 25(1): 1-6.
  • Belzunces, L.P., Tchamitchian, S., Brunet, J.L., 2012. Neural effects of insecticides in the honey bee. Apidologie. 43(3): 348-370.
  • Bitterman, M.E., Menzel, R., Fietz, A., Schäfer, S., 1983. Classical conditioning of proboscis extension in honeybees (Apis mellifera). Journal of Comparative Psychology. 97(2): 107-119.
  • Casida, J.E., Durkin, K.A., 2013. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annual Review of Entomology. 58(1): 99-117.
  • Chensheng, L.U., Warchol, K.M., Callahan, R.A., 2014. Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bulletin of Insectology. 67(1): 125-130.
  • Croy, M.I., Hughes, R.N., 1990. The Combined Effects of Learning and Hunger in the Feeding Behaviour of the Fifteen-Spined Stickleback (Spinachia Spinachia L.). Hughes, R.N. (Eds) Behavioural Mechanisms of Food Selection (pp. 215–234). Berlin, Germany: Springer.
  • Demares, F.J., Crous, K.L., Pirk, C.W., Nicolson, S.W., Human, H., 2016. Sucrose sensitivity of honey bees is differently affected by dietary protein and a neonicotinoid pesticide. PLoS One. 11(6): e0156584.
  • DesJardins, N.S., Fisher, A., Ozturk, C., Fewell, J.H., De Grandi-Hoffman, G., Harrison, J. F., Smith, B.H., 2021. A common fungicide, Pristine®, impairs olfactory associative learning performance in honey bees (Apis mellifera). Environmental Pollution. 288: 117720
  • Desneux, N., Decourtye, A., Delpuech, J.M., 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology. 52(1): 81-106.
  • Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., Pennacchio, F. 2013. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences. 110(46): 18466-18471.
  • Elbert, A., Haas, M., Springer, B., Thielert, W., Nauen, R., 2008. Applied aspects of neonicotinoid uses in crop protection. Pest Management Science: formerly Pesticide Science. 64(11): 1099-1105.
  • Evans, L.J., Raine, N.E., 2014. Changes in learning and foraging behaviour within developing bumble bee (Bombus terrestris) colonies. PLoS One. 9(3): e90556.
  • Fischer, J., Müller, T., Spatz, A.K., Greggers, U., Gruenewald, B., Menzel, R., 2014. Neonicotinoids interfere with specific components of navigation in honeybees. PloS One. 9(3): e91364.
  • Galef Jr, B. G., 2013. Imitation in Animals: History, Definition, And Interpretation of Data from The Psychological Laboratory. in Social learning (pp. 15-40). Psychology Press.
  • Gill, R.J., Raine, N.E., 2014. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Functional Ecology. 28(6): 1459-1471.
  • Giraldeau, L.-A., Caraco, T. Valone, T.J., 1994. Social foraging: Individual learning and cultural transmission of innovations. Behavioral Ecology. 1: 35-43.
  • Giurfa, M., Sandoz, J.C., 2012. Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learning & Memory. 19(2): 54-66.
  • Gösterit, A., Gürel, F., 2009. Effect of different diapause regimes on survival and colony development in the bumble bee, Bombus terrestris. Journal of Apicultural Research. 48: 279-283.
  • Gürel, F., Gösterit, A., Karslı, B.A., 2011. Sera koşullarının Bombus terrestris L. kolonilerinin tozlaşma performansına etkileri. Derim. 28(1): 47-55.
  • Ichikawa, N., Sasaki, M., 2003. Importance of social stimuli for the development of learning capability in honeybees. Applied Entomology and Zoology. 38(2): 203-209.
  • Jeschke, P., Nauen, R., 2008. Neonicotinoids—from zero to hero in insecticide chemistry. Pest Management Science: formerly Pesticide Science. 64(11): 1084-1098
  • Jeschke, P., Nauen, R., Schindler, M., Elbert, A., 2011. Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry. 59(7): 2897-2908.
  • Kendal, R.L., Boogert, N.J., Rendell, L., Laland, K.N., Webster, M., Jones, P.L., 2018. Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences. 22(7): 651-665.
  • Klein, S., Cabirol, A., Devaud, J.M., Barron, A.B., Lihoreau, M., 2017. Why bees are so vulnerable to environmental stressors. Trends in Ecology & Evolution. 32(4): 268-278.
  • Laloi, D., Pham-Delègue, M.H., 2004. Bumble bees show asymmetrical discrimination between two odors in a classical conditioning procedure. Journal of Insect Behavior. 17: 385-396.
  • Laloi, D., Sandoz, J.C., Picard‐Nizou, A.L., Marchesi, A., Pouvreau, A., Taséi, J.N., Poppy, G., Pham‐delègue, M.H., 1999. Olfactory conditioning of the proboscis extension in bumble bees. Entomologia Experimentalis et Applicata. 90(2): 123-129.
  • Lamsa, J., Kuusela, E., Tuomi, J., Juntunen, S., Watts, P.C., 2018. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proceedings of the Royal Society B: Biological Sciences. 285(1883): 20180506.
  • Laurent, F.M., Rathahao, E., 2003. Distribution of [14C] imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment, Journal of Agricultural and Food Chemistry, 51(27): 8005-8010.
  • Leonard, A.S., Masek, P., 2014. Multisensory integration of colors and scents: insights from bees and flowers. Journal of Comparative Physiology A. 200: 463-474.
  • Mengoni Goñalons, C., Farina, W.M., 2018. Impaired associative learning after chronic exposure to pesticides in young adult honey bees. Journal of Experimental Biology. 221(7): jeb176644.
  • Moffat, C., Buckland, S.T., Samson, A.J., McArthur, R., Chamosa Pino, V., Bollan, K. A., Huang J.T.–J., Connolly, C.N., 2016. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees. Scientific Reports. 6(1): 1-10.
  • Muth, F., Francis, J.S., Leonard, A.S., 2019. Modality-specific impairment of learning by a neonicotinoid pesticide. Biology Letters. 15(7): 20190359.
  • Muth, F., Leonard, A.S., 2019. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Scientific Reports. 9(1): 1-13.
  • Muth, F. 2021. Intra-specific differences in cognition: bumblebee queens learn better than workers. Biology Letters. 17(8): 20210280.
  • Pavlov, I. P. 1927. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Translated and edited by Anrep, GV, Oxford University Press
  • Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Downs, C.A., Goulson, D., Wiemers, M., 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research. 22: 68-102.
  • Raine, N.E., Chittka, L., 2008. The correlation of learning speed and natural foraging success in bumble-bees. Proceedings of the Royal Society B: Biological Sciences, 275(1636): 803-808.
  • Riveros, A.J., Gronenberg, W., 2009. Olfactory learning and memory in the bumblebee Bombus occidentalis. Naturwissenschaften. 96: 851-856.
  • Samuelson, E.E.W., Chen-Wishart, Z.P., Gill, R.J., Leadbeater, E., 2016. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radialarm maze. Scientific Reports. 6(1): 38957.
  • Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N., 2016. Are bee diseases linked to pesticides?—A brief review. Environment International. 89: 7-11.
  • Scheiner, R., Barnert, M., Erber, J., 2003. Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. Apidologie. 34(1): 67-72.
  • Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., ..., Wiemers, M., 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research. 22: 5-34.
  • Siviter, H., Koricheva, J., Brown, M.J.F., Leadbeater, E., 2018. Quantifying the impact of pesticides on learning and memory in bees. Journal of Applied Ecology. 55: 2812–2821.
  • Siviter, H., Johnson, A.K., Muth, F., 2021. Bumblebees exposed to a neonicotinoid pesticide make suboptimal foraging decisions. Environmental Entomology. 50(6): 1299-1303.
  • Stanley, D.A., Russell, A.L., Morrison, S. J., Rogers, C., Raine, N. E., 2016. Investigating the impacts of field‐realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. Journal of Applied Ecology, 53(5): 1440-1449.
  • Takeda, K., 1961. Classical conditioned response in the honey bee. Journal of Insect Physiology, 6(3): 168-179.
  • Tan, K., Wang, C., Dong, S., Li, X., Nieh, J.C. 2017. The pesticide flupyradifurone impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Scientific Reports. 7(1): 1-9.
  • Tolon, B. 1999. Yaban arılarında sosyal yaşam. Hayvansal Üretim. 39(1): 120-127.
  • Wang, L., Meeus, I., Rombouts, C., van Meulebroek, L., Vanhaecke, L., Smagghe, G., 2019. Metabolomics-based biomarker discovery for bee health monitoring: A proof of concept study concerning nutritional stress in Bombus terrestris. Scientific Reports. 9(1): 1-11.
  • Whitehorn, P. R., O’Connor, S., Wackers, F. L., Goulson, D., 2012. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 336(6079): 351-352.
  • Woodcock, B. A., Bullock, J. M., Shore, R. F., Heard, M. S., Pereira, M. G., Redhead, J., ..., Pywell, R. F., 2017. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 356(6345): 1393-1395.
  • Worden, B.D., Skemp, A.K., Papaj, D.R., 2005. Learning in two contexts: the effects of interference and body size in bumblebees. Journal of Experimental Biology. 208(11): 2045-2053.
  • Zhao, H., Li, G., Cui, X., Wang, H., Liu, Z., Yang, Y., Xu, B., 2022. Review on effects of some insecticides on honey bee health. Pesticide Biochemistry and Physiology. 105219.

Effect of Neonicotinoid Insecticides on Memory and Learning Behavior in Bumblebee (Bombus terrestris L.) Individuals

Year 2024, Volume: 7 Issue: 1, 30 - 41, 30.06.2024
https://doi.org/10.51970/jasp.1444967

Abstract

Bees that are exposed to various insecticides in different ways and levels, both when used in agricultural production for pollination purposes and in their natural habitats, may lose their feeding reflexes and navigation skills, and may even die. Acetamiprid, an active ingredient in insecticides belonging to the neonicotinoid group, negatively affects the navigation abilities of bees, thus also affecting their learning and memory abilities adversely like other neonicotinoids. Bombus terrestris colony individuals (queen, worker and males) leave the colony for different purposes such as collecting food or mating at certain periods of the colony life cycle and may be exposed to insecticides. In this study, five main groups of colony individuals were designed (Group 1: Unmated young queens, Group 2: mated, diapaused but non-egg-laying queens, Group 3: mated, diapaused and egg-laying queens, Group 4: workers, and Group 5: males). Bees were exposed to 5 different rates (0 (control), 1/1000, 1/100, 1/10, 1/1) of the recommended dose of the Acetamiprid-based insecticide (Hekplan®, HEKTAŞ). Learning and memory behaviors of bees exposed to insecticides were determined by the classical conditioning method. A total of 500 adult individuals (5 groups x 5 doses x 20 bees for each exposure application) were used. As a result of the study, it was determined that the three main queens groups subjected to classical conditioning started learning later and had a lower number of individuals sticking out their tongues compared to the worker and male bee groups. The measurements of the bees in the memory tests were conducted at 1st, 2nd, 6th, and 12th hours after the learning session.It was found that the queen groups were the most affected by the insecticide. The results indicate that the Acetamiprid-based insecticide affects the learning and memory abilities of the bumblebee individuals at different levels.

References

  • Beekman, M., van Stratum, P., 2000. Does the diapause experience of bumblebee queens Bombus terrestris affect colony characteristics?. Ecological Entomology. 25(1): 1-6.
  • Belzunces, L.P., Tchamitchian, S., Brunet, J.L., 2012. Neural effects of insecticides in the honey bee. Apidologie. 43(3): 348-370.
  • Bitterman, M.E., Menzel, R., Fietz, A., Schäfer, S., 1983. Classical conditioning of proboscis extension in honeybees (Apis mellifera). Journal of Comparative Psychology. 97(2): 107-119.
  • Casida, J.E., Durkin, K.A., 2013. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annual Review of Entomology. 58(1): 99-117.
  • Chensheng, L.U., Warchol, K.M., Callahan, R.A., 2014. Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bulletin of Insectology. 67(1): 125-130.
  • Croy, M.I., Hughes, R.N., 1990. The Combined Effects of Learning and Hunger in the Feeding Behaviour of the Fifteen-Spined Stickleback (Spinachia Spinachia L.). Hughes, R.N. (Eds) Behavioural Mechanisms of Food Selection (pp. 215–234). Berlin, Germany: Springer.
  • Demares, F.J., Crous, K.L., Pirk, C.W., Nicolson, S.W., Human, H., 2016. Sucrose sensitivity of honey bees is differently affected by dietary protein and a neonicotinoid pesticide. PLoS One. 11(6): e0156584.
  • DesJardins, N.S., Fisher, A., Ozturk, C., Fewell, J.H., De Grandi-Hoffman, G., Harrison, J. F., Smith, B.H., 2021. A common fungicide, Pristine®, impairs olfactory associative learning performance in honey bees (Apis mellifera). Environmental Pollution. 288: 117720
  • Desneux, N., Decourtye, A., Delpuech, J.M., 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology. 52(1): 81-106.
  • Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., Pennacchio, F. 2013. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences. 110(46): 18466-18471.
  • Elbert, A., Haas, M., Springer, B., Thielert, W., Nauen, R., 2008. Applied aspects of neonicotinoid uses in crop protection. Pest Management Science: formerly Pesticide Science. 64(11): 1099-1105.
  • Evans, L.J., Raine, N.E., 2014. Changes in learning and foraging behaviour within developing bumble bee (Bombus terrestris) colonies. PLoS One. 9(3): e90556.
  • Fischer, J., Müller, T., Spatz, A.K., Greggers, U., Gruenewald, B., Menzel, R., 2014. Neonicotinoids interfere with specific components of navigation in honeybees. PloS One. 9(3): e91364.
  • Galef Jr, B. G., 2013. Imitation in Animals: History, Definition, And Interpretation of Data from The Psychological Laboratory. in Social learning (pp. 15-40). Psychology Press.
  • Gill, R.J., Raine, N.E., 2014. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Functional Ecology. 28(6): 1459-1471.
  • Giraldeau, L.-A., Caraco, T. Valone, T.J., 1994. Social foraging: Individual learning and cultural transmission of innovations. Behavioral Ecology. 1: 35-43.
  • Giurfa, M., Sandoz, J.C., 2012. Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learning & Memory. 19(2): 54-66.
  • Gösterit, A., Gürel, F., 2009. Effect of different diapause regimes on survival and colony development in the bumble bee, Bombus terrestris. Journal of Apicultural Research. 48: 279-283.
  • Gürel, F., Gösterit, A., Karslı, B.A., 2011. Sera koşullarının Bombus terrestris L. kolonilerinin tozlaşma performansına etkileri. Derim. 28(1): 47-55.
  • Ichikawa, N., Sasaki, M., 2003. Importance of social stimuli for the development of learning capability in honeybees. Applied Entomology and Zoology. 38(2): 203-209.
  • Jeschke, P., Nauen, R., 2008. Neonicotinoids—from zero to hero in insecticide chemistry. Pest Management Science: formerly Pesticide Science. 64(11): 1084-1098
  • Jeschke, P., Nauen, R., Schindler, M., Elbert, A., 2011. Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry. 59(7): 2897-2908.
  • Kendal, R.L., Boogert, N.J., Rendell, L., Laland, K.N., Webster, M., Jones, P.L., 2018. Social learning strategies: Bridge-building between fields. Trends in Cognitive Sciences. 22(7): 651-665.
  • Klein, S., Cabirol, A., Devaud, J.M., Barron, A.B., Lihoreau, M., 2017. Why bees are so vulnerable to environmental stressors. Trends in Ecology & Evolution. 32(4): 268-278.
  • Laloi, D., Pham-Delègue, M.H., 2004. Bumble bees show asymmetrical discrimination between two odors in a classical conditioning procedure. Journal of Insect Behavior. 17: 385-396.
  • Laloi, D., Sandoz, J.C., Picard‐Nizou, A.L., Marchesi, A., Pouvreau, A., Taséi, J.N., Poppy, G., Pham‐delègue, M.H., 1999. Olfactory conditioning of the proboscis extension in bumble bees. Entomologia Experimentalis et Applicata. 90(2): 123-129.
  • Lamsa, J., Kuusela, E., Tuomi, J., Juntunen, S., Watts, P.C., 2018. Low dose of neonicotinoid insecticide reduces foraging motivation of bumblebees. Proceedings of the Royal Society B: Biological Sciences. 285(1883): 20180506.
  • Laurent, F.M., Rathahao, E., 2003. Distribution of [14C] imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment, Journal of Agricultural and Food Chemistry, 51(27): 8005-8010.
  • Leonard, A.S., Masek, P., 2014. Multisensory integration of colors and scents: insights from bees and flowers. Journal of Comparative Physiology A. 200: 463-474.
  • Mengoni Goñalons, C., Farina, W.M., 2018. Impaired associative learning after chronic exposure to pesticides in young adult honey bees. Journal of Experimental Biology. 221(7): jeb176644.
  • Moffat, C., Buckland, S.T., Samson, A.J., McArthur, R., Chamosa Pino, V., Bollan, K. A., Huang J.T.–J., Connolly, C.N., 2016. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees. Scientific Reports. 6(1): 1-10.
  • Muth, F., Francis, J.S., Leonard, A.S., 2019. Modality-specific impairment of learning by a neonicotinoid pesticide. Biology Letters. 15(7): 20190359.
  • Muth, F., Leonard, A.S., 2019. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Scientific Reports. 9(1): 1-13.
  • Muth, F. 2021. Intra-specific differences in cognition: bumblebee queens learn better than workers. Biology Letters. 17(8): 20210280.
  • Pavlov, I. P. 1927. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. Translated and edited by Anrep, GV, Oxford University Press
  • Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Downs, C.A., Goulson, D., Wiemers, M., 2015. Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research. 22: 68-102.
  • Raine, N.E., Chittka, L., 2008. The correlation of learning speed and natural foraging success in bumble-bees. Proceedings of the Royal Society B: Biological Sciences, 275(1636): 803-808.
  • Riveros, A.J., Gronenberg, W., 2009. Olfactory learning and memory in the bumblebee Bombus occidentalis. Naturwissenschaften. 96: 851-856.
  • Samuelson, E.E.W., Chen-Wishart, Z.P., Gill, R.J., Leadbeater, E., 2016. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radialarm maze. Scientific Reports. 6(1): 38957.
  • Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N., 2016. Are bee diseases linked to pesticides?—A brief review. Environment International. 89: 7-11.
  • Scheiner, R., Barnert, M., Erber, J., 2003. Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. Apidologie. 34(1): 67-72.
  • Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., ..., Wiemers, M., 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research. 22: 5-34.
  • Siviter, H., Koricheva, J., Brown, M.J.F., Leadbeater, E., 2018. Quantifying the impact of pesticides on learning and memory in bees. Journal of Applied Ecology. 55: 2812–2821.
  • Siviter, H., Johnson, A.K., Muth, F., 2021. Bumblebees exposed to a neonicotinoid pesticide make suboptimal foraging decisions. Environmental Entomology. 50(6): 1299-1303.
  • Stanley, D.A., Russell, A.L., Morrison, S. J., Rogers, C., Raine, N. E., 2016. Investigating the impacts of field‐realistic exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. Journal of Applied Ecology, 53(5): 1440-1449.
  • Takeda, K., 1961. Classical conditioned response in the honey bee. Journal of Insect Physiology, 6(3): 168-179.
  • Tan, K., Wang, C., Dong, S., Li, X., Nieh, J.C. 2017. The pesticide flupyradifurone impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Scientific Reports. 7(1): 1-9.
  • Tolon, B. 1999. Yaban arılarında sosyal yaşam. Hayvansal Üretim. 39(1): 120-127.
  • Wang, L., Meeus, I., Rombouts, C., van Meulebroek, L., Vanhaecke, L., Smagghe, G., 2019. Metabolomics-based biomarker discovery for bee health monitoring: A proof of concept study concerning nutritional stress in Bombus terrestris. Scientific Reports. 9(1): 1-11.
  • Whitehorn, P. R., O’Connor, S., Wackers, F. L., Goulson, D., 2012. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 336(6079): 351-352.
  • Woodcock, B. A., Bullock, J. M., Shore, R. F., Heard, M. S., Pereira, M. G., Redhead, J., ..., Pywell, R. F., 2017. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 356(6345): 1393-1395.
  • Worden, B.D., Skemp, A.K., Papaj, D.R., 2005. Learning in two contexts: the effects of interference and body size in bumblebees. Journal of Experimental Biology. 208(11): 2045-2053.
  • Zhao, H., Li, G., Cui, X., Wang, H., Liu, Z., Yang, Y., Xu, B., 2022. Review on effects of some insecticides on honey bee health. Pesticide Biochemistry and Physiology. 105219.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Zootechny (Other)
Journal Section Research Articles
Authors

İsmail Yaşhan Buluş 0000-0003-4418-588X

Ayhan Gösterit 0000-0001-9686-7992

Selcan Timuroğlu 0000-0002-7258-4143

Publication Date June 30, 2024
Submission Date March 1, 2024
Acceptance Date April 29, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Buluş, İ. Y., Gösterit, A., & Timuroğlu, S. (2024). Neonikotinoid İnsektisitlerin Bombus (Bombus terrestris L.) Arısı Bireylerinde Hafıza ve Öğrenme Davranışına Etkisi. Hayvan Bilimi Ve Ürünleri Dergisi, 7(1), 30-41. https://doi.org/10.51970/jasp.1444967


Indexed by:

Google Scholar        Directory of Research Journals Indexing       idealonline        19413        BASE (Bielefeld Academic Search Engine)        

Index Copernicus        Cite Factor        JournalTOCs

InfoBase Index        SIS Scientific Group        Food and Agriculture Organization of the United Nations

International Peer Reviewed Journal)
The journal doesn’t have APC or any submission charges.

Creative Commons License