Review
BibTex RIS Cite

Uzay Ortamında Bitkilerde Yaşam: Ebedi Karanlıkta Minik Yeşillikler İçin Zorlu Bir Görev

Year 2022, , 1 - 23, 28.02.2022
https://doi.org/10.52995/jass.1027772

Abstract

Uzayla ilgili çalışmaların artması ile beraber, uzun süreli uzay uçuşları için hem güvenilir hem de sürdürülebilir biyoloji temelli yaşam destek sistemleri önemli bir araştırma alanı haline gelmiştir. Bu çalışmaların en önemli odak noktası ise bitkiler olmuştur. Uzayda bitki yetiştirme yeteneği, astronotlara gerekli besinleri sağlamanın yanı sıra, psikolojik sağlıklarını iyileştirmeye de yardım eder. Uzay ortamının simülasyonu, detaylı gen analizleri ve detaylı büyüme analizleri, uzay ortamının bitkiler üzerindeki etkilerini ortaya koymaktadır. Denizdeki ilk fotosentetik organizmalardan günümüzün karasal yüksek bitkilerine kadar, adaptasyon ve evrimin gücüyle bitkiler, Dünya'da milyonlarca yıl hayatta kalmışlardır. Bu nedenle Dünya ile karşılaştırıldığında, uzay ortamında bitkiler azalan yerçekimine, artan radyasyon oranına, kayıp ışık kaynağına farklı tepkiler verecek ve stres gen regülasyonunu değiştirecektir. Bitkilerin uzay ortamına adaptasyonunu konu alan bu derlemede, bitkilerin uzay ortamında yapılarında değişikliklere neden olan stresli koşullarla karşılaştıklarında nasıl tepki verdikleri ve sonuçları çeşitli deneylerle tartışılmıştır. Farklı bitki türleri kullanılarak yapılan çeşitli deneyler sonucunda bu minik yeşillikler uzay ortamındaki zorlu koşullarla karşı karşıya kalsalar da tüm bu zorlu ortamlara karşı bir direnç mekanizması göstermişlerdir.

References

  • Arena, C., De Micco, V., Macaeva, E., & Quintens, R. (2014). Space radiation effects on plant and mammalian cells. Acta Astronautica, 104(1), 419-431. https://doi.org/10.1016/j.actaastro.2014.05.005
  • Avercheva, O., Berkovich, Y. A., Smolyanina, S., Bassarskaya, E., Pogosyan, S., Ptushenko, V., ... & Zhigalova, T. (2014). Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue–red LED assembly designed for space agriculture. Advances in space research, 53(11), 1574-1581. https://doi.org/10.1016/j.asr.2014.03.003
  • Barker, R., & Gilroy, S. (2017). Life in space isn't easy, even if you are green. The Biochemist, 39(6), 10-13. https://doi.org/10.1042/BIO03906010
  • Berkovich, Y. A., Konovalova, I. O., Smolyanina, S. O., Erokhin, A. N., Avercheva, O. V., Bassarskaya, E. M., ... & Tarakanov, I. G. (2017). LED crop illumination inside space greenhouses. Reach, 6, 11-24. doi:10.1016/j.reach.2017.06.001.
  • Bula, R. J., Morrow, R. C., Tibbitts, T. W., Barta, D. J., Ignatius, R. W., & Martin, T. S. (1991). Light-emitting diodes as a radiation source for plants. HortScience, 26(2), 203-205. https://doi.org/10.21273/HORTSCI.26.2.203
  • Burgner, S. E., Nemali, K., Massa, G. D., Wheeler, R. M., Morrow, R. C., & Mitchell, C. A. (2020). Growth and photosynthetic responses of Chinese cabbage (Brassica rapa L. cv. Tokyo Bekana) to continuously elevated carbon dioxide in a simulated Space Station “Veggie” crop-production environment. Life Sciences in Space Research, 27, 83-88. https://doi.org/10.1016/j.lssr.2020.07.007
  • De Micco, V., Arena, C., Pignalosa, D., & Durante, M. (2011). Effects of sparsely and densely ionizing radiation on plants. Radiation and Environmental Biophysics, 50(1), 1-19. doi:10.1007/s00411-010-0343-8
  • Ferranti, F., Del Bianco, M., & Pacelli, C. (2021). Advantages and Limitations of Current Microgravity Platforms for Space Biology Research. Applied Sciences, 11(1), 68. https://doi.org/10.3390/app11010068
  • Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C., de Geest, M., ... & Hemmersbach, R. (2013). Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology, 13(1), 1-17. https://doi.org/10.1089/ast.2012.0876
  • Hoson, T. (2014). Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space. Life, 4(2), 205-216. https://doi.org/10.3390/life4020205
  • Hoson, T., Saito, Y., Soga, K., & Wakabayashi, K. (2005). Signal perception, transduction, and response in gravity resistance. Another graviresponse in plants. Advances in Space Research, 36(7), 1196-1202. https://doi.org/10.1016/j.asr.2005.04.095
  • Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., & Kamisaka, S. (2002). Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant and Cell Physiology, 43(9), 1067-1071. https://doi.org/10.1093/pcp/pcf126
  • Kitaya, Y. (2019). Plant Factory and Space Development,“Space Farm”. In Plant Factory Using Artificial Light (pp. 363-379). Elsevier. https://doi.org/10.1016/B978-0-12-813973-8.00030-0
  • Kovacs, E., & Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199-210. https://doi.org/10.1016/S0968-4328(01)00012-9
  • Matía, I., González-Camacho, F., Herranz, R., Kiss, J. Z., Gasset, G., van Loon, J. J., ... & Medina, F. J. (2010). Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. Journal of plant physiology, 167(3), 184-193. doi: 10.1016/j.jplph.2009.08.012
  • Mochizuki, S., Harada, A., Inada, S., Sugimoto-Shirasu, K., Stacey, N., Wada, T., ... & Sakai, T. (2005). The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. The Plant Cell, 17(2), 537-547. https://doi.org/10.1105/tpc.104.028530
  • Muthert, L. W. F., Izzo, L. G., Van Zanten, M., & Aronne, G. (2020). Root tropisms: Investigations on earth and in space to unravel plant growth direction. Frontiers in plant science, 10, 1807. https://doi.org/10.3389/fpls.2019.01807
  • NASA, LED Systems Target Plant Growth. (n.d.). Retrieved 2021, from https://spinoff.nasa.gov/Spinoff2010/cg_1.html
  • NASA, Perez, J. (2017, April 13). Why Space Radiation Matters. Retrieved 2021, from https://www.nasa.gov/analogs/nsrl/why-space-radiation-matters
  • Rea, G., Esposito, D., Damasso, M., Serafini, A., Margonelli, A., Faraloni, C., ... & Giardi, M. T. (2008). Ionizing radiation impacts photochemical quantum yield and oxygen evolution activity of Photosystem II in photosynthetic microorganisms. International journal of radiation biology, 84(11), 867-877. https://doi.org/10.1080/09553000802460149
  • Rehman, M., Ullah, S., Bao, Y., Wang, B., Peng, D., & Liu, L. (2017). Light-emitting diodes: whether an efficient source of light for indoor plants?. Environmental Science and Pollution Research, 24(32), 24743-24752. https://doi.org/10.1007/s11356-017-0333-3
  • Shi, J., Lu, W., & Sun, Y. (2014). Comparison of space flight and heavy ion radiation induced genomic/epigenomic mutations in rice (Oryza sativa). Life sciences in space research, 1, 74-79. https://doi.org/10.1016/j.lssr.2014.02.007
  • Shkolnik, D., Krieger, G., Nuriel, R., & Fromm, H. (2016). Hydrotropism: root bending does not require auxin redistribution. Molecular plant, 9(5), 757-759. https://doi.org/10.1016/j.molp.2016.02.001
  • Soga, K., Wakabayashi, K., Kamisaka, S., & Hoson, T. (2002). Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space. Planta, 215(6), 1040-1046. https://doi.org/10.1007/s00425-002-0838-x
  • Stutte, G. W., Monje, O. S. C. A. R., Hatfield, R. D., Paul, A. L., Ferl, R. J., & Simone, C. G. (2006). Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta, 224(5), 1038-1049.
  • Türkan, İ., (Ed.). (2008). Bitki Fizyolojisi (3rd ed.). Ankara: Taiz, L., Zeiger, E.
  • Vandenbrink, J. P., & Kiss, J. Z. (2016). Space, the final frontier: A critical review of recent experiments performed in microgravity. Plant Science, 243, 115-119. https://doi.org/10.1016/j.plantsci.2015.11.004
  • Wi, S. G., Chung, B. Y., Kim, J. H., Baek, M. H., Yang, D. H., Lee, J. W., & Kim, J. S. (2005). Ultrastructural changes of cell organelles in Arabidopsis stems after gamma irradation. Journal of Plant Biology, 48(2), 195-200. https://doi.org/10.1007/BF03030408
  • Wi, S. G., Chung, B. Y., Kim, J. S., Kim, J. H., Baek, M. H., Lee, J. W., & Kim, Y. S. (2007). Effects of gamma irradiation on morphological changes and biological responses in plants. Micron, 38(6), 553-564.) doi: 10.1016/j.micron.2006.11.002
  • Zupanska, A. K., LeFrois, C., Ferl, R. J., & Paul, A. L. (2019). HSFA2 functions in the physiological adaptation of undifferentiated plant cells to spaceflight. International journal of molecular sciences, 20(2), 390. https://doi.org/10.3390/ijms20020390

Life of Plants in Space: A Challenging Mission For Tiny Greens In An Everlasting Darkness

Year 2022, , 1 - 23, 28.02.2022
https://doi.org/10.52995/jass.1027772

Abstract

With the increased number of space-related studies, it has become a significant study field in both dependable and long-term biology-based life support systems for long-term space flights. Plants have been the major focus of this research. The capability of cultivate plants in space can help to provide astronauts with essential nutrients as well as improve their psychological health. Simulating the space environment, detailed gene analysis, and detailed growth analyzes reveal the effects of the space environment on plants. From the first photosynthetic organisms in the sea to today's terrestrial higher plants, they have survived millions of years on the Earth with the power of adaptations and evolution. Therefore, compared to the Earth, in the space environment, plants will react differently to decreased gravity, increased radiation rate, lost light source, and they will have altered stress gene regulation. In this review, which is about the adaptation of plants to the space environment, how plants react when they encounter stressful conditions that cause changes in their structures in the space environment and the results are discussed with various experiments. As a result, with using different plant species, it looks like even though these tiny greens faced with the hard condition in space environment they have shown a resistance mechanism to all these tough environments.

References

  • Arena, C., De Micco, V., Macaeva, E., & Quintens, R. (2014). Space radiation effects on plant and mammalian cells. Acta Astronautica, 104(1), 419-431. https://doi.org/10.1016/j.actaastro.2014.05.005
  • Avercheva, O., Berkovich, Y. A., Smolyanina, S., Bassarskaya, E., Pogosyan, S., Ptushenko, V., ... & Zhigalova, T. (2014). Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue–red LED assembly designed for space agriculture. Advances in space research, 53(11), 1574-1581. https://doi.org/10.1016/j.asr.2014.03.003
  • Barker, R., & Gilroy, S. (2017). Life in space isn't easy, even if you are green. The Biochemist, 39(6), 10-13. https://doi.org/10.1042/BIO03906010
  • Berkovich, Y. A., Konovalova, I. O., Smolyanina, S. O., Erokhin, A. N., Avercheva, O. V., Bassarskaya, E. M., ... & Tarakanov, I. G. (2017). LED crop illumination inside space greenhouses. Reach, 6, 11-24. doi:10.1016/j.reach.2017.06.001.
  • Bula, R. J., Morrow, R. C., Tibbitts, T. W., Barta, D. J., Ignatius, R. W., & Martin, T. S. (1991). Light-emitting diodes as a radiation source for plants. HortScience, 26(2), 203-205. https://doi.org/10.21273/HORTSCI.26.2.203
  • Burgner, S. E., Nemali, K., Massa, G. D., Wheeler, R. M., Morrow, R. C., & Mitchell, C. A. (2020). Growth and photosynthetic responses of Chinese cabbage (Brassica rapa L. cv. Tokyo Bekana) to continuously elevated carbon dioxide in a simulated Space Station “Veggie” crop-production environment. Life Sciences in Space Research, 27, 83-88. https://doi.org/10.1016/j.lssr.2020.07.007
  • De Micco, V., Arena, C., Pignalosa, D., & Durante, M. (2011). Effects of sparsely and densely ionizing radiation on plants. Radiation and Environmental Biophysics, 50(1), 1-19. doi:10.1007/s00411-010-0343-8
  • Ferranti, F., Del Bianco, M., & Pacelli, C. (2021). Advantages and Limitations of Current Microgravity Platforms for Space Biology Research. Applied Sciences, 11(1), 68. https://doi.org/10.3390/app11010068
  • Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C., de Geest, M., ... & Hemmersbach, R. (2013). Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology, 13(1), 1-17. https://doi.org/10.1089/ast.2012.0876
  • Hoson, T. (2014). Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space. Life, 4(2), 205-216. https://doi.org/10.3390/life4020205
  • Hoson, T., Saito, Y., Soga, K., & Wakabayashi, K. (2005). Signal perception, transduction, and response in gravity resistance. Another graviresponse in plants. Advances in Space Research, 36(7), 1196-1202. https://doi.org/10.1016/j.asr.2005.04.095
  • Hoson, T., Soga, K., Mori, R., Saiki, M., Nakamura, Y., Wakabayashi, K., & Kamisaka, S. (2002). Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space. Plant and Cell Physiology, 43(9), 1067-1071. https://doi.org/10.1093/pcp/pcf126
  • Kitaya, Y. (2019). Plant Factory and Space Development,“Space Farm”. In Plant Factory Using Artificial Light (pp. 363-379). Elsevier. https://doi.org/10.1016/B978-0-12-813973-8.00030-0
  • Kovacs, E., & Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199-210. https://doi.org/10.1016/S0968-4328(01)00012-9
  • Matía, I., González-Camacho, F., Herranz, R., Kiss, J. Z., Gasset, G., van Loon, J. J., ... & Medina, F. J. (2010). Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. Journal of plant physiology, 167(3), 184-193. doi: 10.1016/j.jplph.2009.08.012
  • Mochizuki, S., Harada, A., Inada, S., Sugimoto-Shirasu, K., Stacey, N., Wada, T., ... & Sakai, T. (2005). The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. The Plant Cell, 17(2), 537-547. https://doi.org/10.1105/tpc.104.028530
  • Muthert, L. W. F., Izzo, L. G., Van Zanten, M., & Aronne, G. (2020). Root tropisms: Investigations on earth and in space to unravel plant growth direction. Frontiers in plant science, 10, 1807. https://doi.org/10.3389/fpls.2019.01807
  • NASA, LED Systems Target Plant Growth. (n.d.). Retrieved 2021, from https://spinoff.nasa.gov/Spinoff2010/cg_1.html
  • NASA, Perez, J. (2017, April 13). Why Space Radiation Matters. Retrieved 2021, from https://www.nasa.gov/analogs/nsrl/why-space-radiation-matters
  • Rea, G., Esposito, D., Damasso, M., Serafini, A., Margonelli, A., Faraloni, C., ... & Giardi, M. T. (2008). Ionizing radiation impacts photochemical quantum yield and oxygen evolution activity of Photosystem II in photosynthetic microorganisms. International journal of radiation biology, 84(11), 867-877. https://doi.org/10.1080/09553000802460149
  • Rehman, M., Ullah, S., Bao, Y., Wang, B., Peng, D., & Liu, L. (2017). Light-emitting diodes: whether an efficient source of light for indoor plants?. Environmental Science and Pollution Research, 24(32), 24743-24752. https://doi.org/10.1007/s11356-017-0333-3
  • Shi, J., Lu, W., & Sun, Y. (2014). Comparison of space flight and heavy ion radiation induced genomic/epigenomic mutations in rice (Oryza sativa). Life sciences in space research, 1, 74-79. https://doi.org/10.1016/j.lssr.2014.02.007
  • Shkolnik, D., Krieger, G., Nuriel, R., & Fromm, H. (2016). Hydrotropism: root bending does not require auxin redistribution. Molecular plant, 9(5), 757-759. https://doi.org/10.1016/j.molp.2016.02.001
  • Soga, K., Wakabayashi, K., Kamisaka, S., & Hoson, T. (2002). Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space. Planta, 215(6), 1040-1046. https://doi.org/10.1007/s00425-002-0838-x
  • Stutte, G. W., Monje, O. S. C. A. R., Hatfield, R. D., Paul, A. L., Ferl, R. J., & Simone, C. G. (2006). Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat. Planta, 224(5), 1038-1049.
  • Türkan, İ., (Ed.). (2008). Bitki Fizyolojisi (3rd ed.). Ankara: Taiz, L., Zeiger, E.
  • Vandenbrink, J. P., & Kiss, J. Z. (2016). Space, the final frontier: A critical review of recent experiments performed in microgravity. Plant Science, 243, 115-119. https://doi.org/10.1016/j.plantsci.2015.11.004
  • Wi, S. G., Chung, B. Y., Kim, J. H., Baek, M. H., Yang, D. H., Lee, J. W., & Kim, J. S. (2005). Ultrastructural changes of cell organelles in Arabidopsis stems after gamma irradation. Journal of Plant Biology, 48(2), 195-200. https://doi.org/10.1007/BF03030408
  • Wi, S. G., Chung, B. Y., Kim, J. S., Kim, J. H., Baek, M. H., Lee, J. W., & Kim, Y. S. (2007). Effects of gamma irradiation on morphological changes and biological responses in plants. Micron, 38(6), 553-564.) doi: 10.1016/j.micron.2006.11.002
  • Zupanska, A. K., LeFrois, C., Ferl, R. J., & Paul, A. L. (2019). HSFA2 functions in the physiological adaptation of undifferentiated plant cells to spaceflight. International journal of molecular sciences, 20(2), 390. https://doi.org/10.3390/ijms20020390
There are 30 citations in total.

Details

Primary Language English
Journal Section Review
Authors

Ecem Su Koçkaya 0000-0001-9568-641X

Cemal Un 0000-0002-4248-9671

Publication Date February 28, 2022
Submission Date November 24, 2021
Acceptance Date January 25, 2022
Published in Issue Year 2022

Cite

APA Koçkaya, E. S., & Un, C. (2022). Life of Plants in Space: A Challenging Mission For Tiny Greens In An Everlasting Darkness. Havacılık Ve Uzay Çalışmaları Dergisi, 2(2), 1-23. https://doi.org/10.52995/jass.1027772