Research Article
BibTex RIS Cite

Sürdürülebilir havacılık için makine öğrenimine dayalı uçuş içi yemek israfı tahmini

Year 2025, Volume: 5 Issue: 1, 1 - 16, 28.02.2025
https://doi.org/10.52995/jass.1536614

Abstract

Bu çalışma, havacılık lojistiğinde sürdürülebilirliği iyileştirmek için uçak içi gıda israfını tahmin etmek ve azaltmak amacıyla makine öğreniminin kullanımını araştırmaktadır. Büyük bir çevresel sorun olan uçak içi gıda israfı, yolcu tercihleri, uçuş parametreleri ve ikram hizmetleri tarafından belirlenmektedir. Bu araştırma, uçuşlar sırasında gıda israfı tahmini yapmak için Çoklu Doğrusal ve Rastgele Orman Regresyonu olmak üzere iki etkili makine öğrenimi algoritması sunmaktadır. Modeller, yemek türü, israf ağırlığı ve yolcu sayısı gibi faktörleri içeren 10.000 kayıt ve 15 özellikten oluşan sentetik olarak oluşturulmuş bir veri kümesi kullanılarak eğitilmiştir. Çalışma, tahmin doğruluğunu artırmak için "Yolcu Başına İsraf" ve "Yemek Verimliliği" gibi yeni özelliklerin geliştirilmesi de dahil olmak üzere önemli özellik mühendisliği üstlenmektedir. En etkili özellikleri belirlemek için bir korelasyon analizi de kullanılmaktadır. Modellerin performansı, Python tabanlı bir hesaplama ortamında değerlendirilmekte olup Çoklu Doğrusal Regresyon yiyecek israfı ve göstergeler arasındaki doğrusal bağlantılara, Rastgele Orman Regresyonu ise doğrusal olmayan etkileşimlere odaklanmaktadır. Sonuçlar, her iki modelin de uçuş sırasındaki gıda israfını etkili bir şekilde tahmin edebildiğini ve Rastgele Orman Regresyonunun karmaşık kalıplara daha iyi uyum sağladığını göstermektedir. Araştırma, havayolu yöneticilerine havacılık lojistiğindeki genel sürdürülebilirlik hedeflerine karşılık gelen veri odaklı israf azaltma tekniklerini uygulamaları yönünde önerilerle sonuçlanmaktadır. Oluşturulan modeller, uçuş sırasındaki yiyecekleri optimize etmek, çevresel etkiyi azaltmak ve sektörün sürdürülebilirlik girişimlerine katkıda bulunmak için kullanışlı bir araçtır.

References

  • Blanca-Alcubilla, G., Roca, M., Bala, A., Sanz, N., De Castro, N., & Fullana-I-Palmer, P. (2019). Airplane cabin waste characterization: Knowing the waste for sustainable management and future recommendations. Waste Management, 96, pp. 57-64. doi:10.1016/j.wasman.2019.07.002
  • Dhir, A., Talwar, S., Kaur, P., & Malibari, A. (2020). Food waste in hospitality and food services: A systematic literature review and framework development approach. Journal of Cleaner Production, 270(122861). doi:10.1016/j.jclepro.2020.122861
  • Halizahari, M., Mohamad, M. H., Anis, W., & Wan, A. (2021). A study on in-flight catering impacts on food waste. Solid State Technology, 64(2), pp. 4656-4667.
  • Hast, M. (2019). Evaluation of machine learning algorithms for customer demand prediction of in-flight meals. Retrieved February 6, 2025, from https://www.diva-portal.org/smash/get/diva2:1337269/FULLTEXT01.pdf
  • Lohawala, N., & Wen, Z. P. (2024). Navigating Sustainable Skies: Challenges and Strategies for Greener Aviation. Retrieved February 21, 2025, from https://media.rff.org/documents/Report_24-07.pdf
  • Megodawickrama, P. L. (2017). Impact of Passenger Load Factor Variability on Average Daily Flight Kitchen Waste in Flight Catering Industry in Sri Lanka. Retrieved from http://dl.lib.uom.lk/bitstream/handle/123/14193/TH3665.pdf?sequence=2&isAllowed=y
  • Phothisuk, A. (2019). Waste reduction from the in-flight services of Airlines in Thailand. St. Theresa Journal of Humanities and Social Sciences, 5(2), pp. 110-119.
  • Rodrigues, M., Miguéis, V., Freitas, S., & Machado, T. (2024). Machine learning models for short-term demand forecasting in food catering services: A solution to reduce food waste. Journal of Cleaner Production, 435(140265).
  • Ross, J. (2014). Food waste in an airline caterer’s production kitchen. University of Otago. Retrieved February 6, 2025, from https://hdl.handle.net/10523/5486
  • Sambo, N., & Hlengwa, D. (2018). Post-flight food waste and corporate social responsibility at South Africa Airways: Perceptions of employees at Air Chefs South Africa. African Journal of Hospitality, Tourism and Leisure, 7, pp. 1-17.
  • Teoh, L. E. (2018). A bi-objective optimization approach for inflight food waste reduction. E3S Web of Conferences. 65. 10.1051/e3sconf/20186504001: EDP Sciences. doi:10.1051/e3sconf/20186504001
  • Thamagasorn, M., & Pharino, C. (2019). An analysis of food waste from a flight catering business for sustainable food waste management: A case study of halal food production process. Journal of Cleaner Production, 228, pp. 845-855.
  • Tofalli, N., Loizia, P., & Zorpas, A. A. (2018). Passengers waste production during flights. Environmental Science and Pollution Research, 25(36), pp. 35764-35775. doi:10.1007/s11356-017-0800-x
  • van der Walt, A., & Bean, W. L. (2022). Inventory management for the in-flight catering industry: A case of uncertain demand and product substitutability. Computers & Industrial Engineering, 165(107914). doi:10.1016/j.cie.2021.107914
  • Wu, P. J., & Yang, C. K. (2021). Sustainable development in aviation logistics: Successful drivers and business strategies. Business Strategy and the Environment, 30(8), pp. 3763-3771.

Machine learning-based inflight food waste prediction for sustainable aviation

Year 2025, Volume: 5 Issue: 1, 1 - 16, 28.02.2025
https://doi.org/10.52995/jass.1536614

Abstract

The study delves into the utilization of machine learning to predict and reduce inflight food waste, improving sustainability in aviation logistics. Inflight food waste, a major environmental problem, is determined by passenger choices, flight parameters, and catering services. The research presents two efficient machine learning algorithms, that are, Multiple Linear and Random Forest Regression to perform food waste prediction during the flights. The models are trained using a synthetically created dataset of 10,000 records and 15 features, which include factors such as meal type, waste weight, and passenger number. The study undertakes considerable feature engineering, including the development of new features such as "Waste per Passenger" and "Meal Efficiency" to increase forecast accuracy. A correlation analysis is also used to determine the most influential characteristics. The models' performance is assessed in a Python-based computational environment, with MLR concentrating on linear links between food waste and predictors and RFR on non-linear interactions. The results show that both models can effectively forecast inflight food waste, with RFR being more adaptable to complicated patterns. The research concludes with recommendations for airline managers to apply data-driven waste reduction techniques that correspond with overall sustainability goals in aviation logistics. The models created are a useful tool for optimizing inflight food, lowering environmental impact, and contributing to the industry's sustainability initiatives.

References

  • Blanca-Alcubilla, G., Roca, M., Bala, A., Sanz, N., De Castro, N., & Fullana-I-Palmer, P. (2019). Airplane cabin waste characterization: Knowing the waste for sustainable management and future recommendations. Waste Management, 96, pp. 57-64. doi:10.1016/j.wasman.2019.07.002
  • Dhir, A., Talwar, S., Kaur, P., & Malibari, A. (2020). Food waste in hospitality and food services: A systematic literature review and framework development approach. Journal of Cleaner Production, 270(122861). doi:10.1016/j.jclepro.2020.122861
  • Halizahari, M., Mohamad, M. H., Anis, W., & Wan, A. (2021). A study on in-flight catering impacts on food waste. Solid State Technology, 64(2), pp. 4656-4667.
  • Hast, M. (2019). Evaluation of machine learning algorithms for customer demand prediction of in-flight meals. Retrieved February 6, 2025, from https://www.diva-portal.org/smash/get/diva2:1337269/FULLTEXT01.pdf
  • Lohawala, N., & Wen, Z. P. (2024). Navigating Sustainable Skies: Challenges and Strategies for Greener Aviation. Retrieved February 21, 2025, from https://media.rff.org/documents/Report_24-07.pdf
  • Megodawickrama, P. L. (2017). Impact of Passenger Load Factor Variability on Average Daily Flight Kitchen Waste in Flight Catering Industry in Sri Lanka. Retrieved from http://dl.lib.uom.lk/bitstream/handle/123/14193/TH3665.pdf?sequence=2&isAllowed=y
  • Phothisuk, A. (2019). Waste reduction from the in-flight services of Airlines in Thailand. St. Theresa Journal of Humanities and Social Sciences, 5(2), pp. 110-119.
  • Rodrigues, M., Miguéis, V., Freitas, S., & Machado, T. (2024). Machine learning models for short-term demand forecasting in food catering services: A solution to reduce food waste. Journal of Cleaner Production, 435(140265).
  • Ross, J. (2014). Food waste in an airline caterer’s production kitchen. University of Otago. Retrieved February 6, 2025, from https://hdl.handle.net/10523/5486
  • Sambo, N., & Hlengwa, D. (2018). Post-flight food waste and corporate social responsibility at South Africa Airways: Perceptions of employees at Air Chefs South Africa. African Journal of Hospitality, Tourism and Leisure, 7, pp. 1-17.
  • Teoh, L. E. (2018). A bi-objective optimization approach for inflight food waste reduction. E3S Web of Conferences. 65. 10.1051/e3sconf/20186504001: EDP Sciences. doi:10.1051/e3sconf/20186504001
  • Thamagasorn, M., & Pharino, C. (2019). An analysis of food waste from a flight catering business for sustainable food waste management: A case study of halal food production process. Journal of Cleaner Production, 228, pp. 845-855.
  • Tofalli, N., Loizia, P., & Zorpas, A. A. (2018). Passengers waste production during flights. Environmental Science and Pollution Research, 25(36), pp. 35764-35775. doi:10.1007/s11356-017-0800-x
  • van der Walt, A., & Bean, W. L. (2022). Inventory management for the in-flight catering industry: A case of uncertain demand and product substitutability. Computers & Industrial Engineering, 165(107914). doi:10.1016/j.cie.2021.107914
  • Wu, P. J., & Yang, C. K. (2021). Sustainable development in aviation logistics: Successful drivers and business strategies. Business Strategy and the Environment, 30(8), pp. 3763-3771.
There are 15 citations in total.

Details

Primary Language English
Subjects Statistics (Other), Air Transportation and Freight Services, Transportation, Logistics and Supply Chains (Other)
Journal Section Research Articles
Authors

Duygu Aghazadeh 0009-0004-1674-3682

Early Pub Date February 27, 2025
Publication Date February 28, 2025
Submission Date August 21, 2024
Acceptance Date September 15, 2024
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Aghazadeh, D. (2025). Machine learning-based inflight food waste prediction for sustainable aviation. Havacılık Ve Uzay Çalışmaları Dergisi, 5(1), 1-16. https://doi.org/10.52995/jass.1536614