Theoretical Article
BibTex RIS Cite

Serrasyonlu kanat kenarları ve gürültü azaltma: Aerodinamik çalışmalara genel bir bakış

Year 2025, Volume: 5 Issue: 1, 48 - 64, 28.02.2025
https://doi.org/10.52995/jass.1571905

Abstract

Bu çalışma, havacılık sektöründe önemli bir sorun olan aerodinamik gürültü kaynaklarını ve bu gürültülerin azaltılmasına yönelik çözüm önerilerini detaylı bir şekilde incelemektedir. Uçaklar ve diğer hava araçları, yüksek hızlarda hareket ederken, özellikle kanat firar kenarlarında oluşan türbülanslı akışlar nedeniyle çevresel ve operasyonel sorunlara yol açan çeşitli gürültü mekanizmaları üretmektedir. Bu çalışmanın amacı, aerodinamik gürültünün kaynaklarının anlaşılması ve azaltılması için yenilikçi çözüm stratejilerini ortaya koymaktır. Araştırmada, firar kenarlarının geometrik modifikasyonu ve serrasyonların kullanımı üzerine yoğunlaşılmış ve bu yaklaşımların türbülansı bozmada ve gürültü seviyelerini düşürmede etkili olduğu gözlemlenmiştir. Serrasyonların, düşük frekanslı gürültü bileşenlerini azaltırken aerodinamik performansı koruduğu deneysel ve sayısal analizlerle desteklenmiştir. Çalışma, literatürde daha önce ele alınan teorik yaklaşımları ve analitik modelleri kapsamına alarak serrasyonlu firar kenarlarının gürültü azaltma potansiyelini değerlendirmektedir. Bu çalışma, havacılık endüstrisinde çevresel gürültü yönetimi ve aerodinamik verimlilik hedeflerine yönelik stratejik yaklaşımlar sunmaktadır. Gelecekteki araştırmalara temel oluşturan bu çalışma, sessiz ve çevre dostu hava araçlarının geliştirilmesine katkı sağlamaktadır.

References

  • Agrawal, B. R., & Sharma, A. (2016). Numerical analysis of aerodynamic noise mitigation via leading edge serrations for a rod–airfoil configuration. International Journal of Aeroacoustics, 15(8), s. 734-756. doi:10.1177/1475472X16672322
  • Aşkan, A., & Tangöz, S. (2018). The impact of aspect ratio on aerodynamic performance and flow separation behavior of a model wing composed from different profiles. Journal of Energy Systems, 2(4), s. 224-237. doi:10.30521/jes.454215
  • Avallone, F., Van Der Velden, W. C., & Ragni, D. (2017). Benefits of curved serrations on broadband trailing-edge noise reduction. Journal of Sound and Vibration, 400, s. 167-177. doi:10.1016/j.jsv.2017.04.007
  • Ayton, L. J. (2018). Analytic solution for aerodynamic noise generated by plates with spanwise-varying trailing edges. Journal of Fluid Mechanics, 849, s. 448-466. doi:10.1017/jfm.2018.431
  • Brooks, F., Stuart, D., & Marcolini, A. (1989). Airfoil Self-Noise and Prediction. Şubat 15, 2025 tarihinde https://ntrs.nasa.gov/api/citations/19890016302/downloads/19890016302.pdf adresinden alındı
  • Chen, J., Xie, J., & Lee, H.-M. (2023). Noise attenuation by half flat tip serrated trailing edge in rotating blades. Journal of Physics: Conference Series, 2489(1). doi:10.1088/1742-6596/2489/1/012022
  • Chong, T. P., & Joseph, P. F. (2013). An experimental study of airfoil instability tonal noise with trailing edge serrations. Journal of Sound and Vibration, 332(24), s. 6335-6358. doi:10.1016/j.jsv.2013.06.033
  • Gruber, M., Joseph, P., & Chong, T. (2012). On the mechanisms of serrated airfoil trailing edge noise reduction. 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). doi:10.2514/6.2011-2781
  • Howe, M. S. (1991). Noise produced by a sawtooth trailing edge. The Journal of the Acoustical Society of America, 90(1), s. 482-487. doi:10.1121/1.401273
  • Jones, L., & Sandberg, R. (2010). Numerical investigation of airfoil self-noise reduction by addition of trailing-edge serrations. 16th AIAA/CEAS Aeroacoustics Conference. doi:10.2514/6.2010-3703
  • Kholodov, P., & Moreau, S. (2021). Optimization of trailing-edge serrations with and without slits for broadband noise reduction. Journal of Sound and Vibration, 490. doi:10.1016/j.jsv.2020.115736
  • Kim, J.-H., Choi, K.-S., Lacagnina, G., Paruchuri, C., Joseph, P., Hasheminejad, S. M., . . . Pinelli, A. (2022). Aerodynamic and aeroacoustic optimization of leading-edge undulation of a NACA 65(12)-10 airfoil. AIAA Journal, 60(4), s. 2342-2353.
  • Lee, S., Ayton, L., Bertagnolio, F., Moreau, S., Chong, T. P., & Joseph, P. (2021). Turbulent boundary layer trailing-edge noise: Theory, computation, experiment, and application. Progress in Aerospace Sciences, 126. doi:10.1016/j.paerosci.2021.100737
  • Liu, W. Y. (2017). A review on wind turbine noise mechanism and de-noising techniques. Renewable Energy, 108, s. 311-320. doi:10.1016/j.renene.2017.02.034
  • Llorente, E., & Ragni, D. (2020). Trailing-edge serrations effect on the performance of a wind turbine. Renewable Energy, 147, s. 437-446. doi:10.1016/j.renene.2019.08.128
  • Lu, Y., Li, Z., Chang, X., Chuang, Z., & Xing, J. (2021). An aerodynamic optimization design study on the bio-inspired airfoil with leading-edge tubercles. Engineering Applications of Computational Fluid Mechanics, 15(1), s. 292-312. doi:10.1080/19942060.2020.1856723
  • Qaissi, K., Elsayed, O., Faqir, M., & Essadiqi, E. (2023). Aerodynamic optimization of trailing-edge-serrations for a wind turbine blade using Taguchi modified additive model. Energies, 16(3). doi:10.3390/en16031099
  • Rong, J., Jiang, Y., Murayama, Y., Ishibashi, R., M. M., & Liu, H. (2024). Trailing-edge fringes enable robust aerodynamic force production and noise suppression in an owl wing model. Bioinspiration & Biomimetics, 19(1). doi:10.1088/1748-3190/ad0aa9
  • Timothy, M. P. (2024). Biomimetic engineering: Designing solutions inspired by nature. Journal of Biological and Applied Science, 3(2), s. 45-48.
  • Wang, Y., Zhao, K., Lu, X.-Y., Song, Y.-B., & Bennett, G. J. (2019). Bio-inspired aerodynamic noise control: A bibliographic review. Applied Sciences, 9(11). doi:10.3390/app9112224
  • Xie, J., Zhu, L., & Lee, H. M. (2023). Aircraft noise reduction strategies and analysis of the effects. International Journal of Environmental Research and Public Health, 20(2). doi:10.3390/ijerph20021352
  • Yang, C., Liu, Y., Zhang, X., & Bi, C. (2024). Hybrid control of aerofoil self-noise by coupling air blowing and trailing-edge serration. Journal of Sound and Vibration, 575. doi:10.1016/j.jsv.2024.118265
  • Ye, X., Zheng, N., Zhang, R., & Li, C. (2022). Effect of serrated trailing-edge blades on aerodynamic noise of an axial fan. Journal of Mechanical Science and Technology, 36(6), s. 2937-2948. doi:10.1007/s12206-022-0526-7

Serrated wing edges and noise reduction: An overview of aerodynamic studies

Year 2025, Volume: 5 Issue: 1, 48 - 64, 28.02.2025
https://doi.org/10.52995/jass.1571905

Abstract

This study provides a detailed examination of aerodynamic noise sources, a significant issue in the aviation industry, and presents solution proposals for noise reduction. Aircraft and other aerial vehicles generate various noise mechanisms, particularly due to turbulent flows occurring at the trailing edges of wings during high-speed operations, leading to environmental and operational challenges. The aim of this study is to understand the sources of aerodynamic noise and to propose innovative strategies for its mitigation. The research focuses on the geometric modification of trailing edges and the use of serrations, observing that these approaches effectively disrupt turbulence and reduce noise levels. Experimental and numerical analyses have demonstrated that serrations reduce low-frequency noise components while maintaining aerodynamic performance. The study evaluates the noise reduction potential of serrated trailing edges by incorporating theoretical approaches and analytical models previously discussed in the literature. This study offers strategic approaches aimed at achieving environmental noise management and aerodynamic efficiency in the aviation industry. Serving as a foundation for future research, this work contributes to the development of quieter and more environmentally friendly aerial vehicles.

References

  • Agrawal, B. R., & Sharma, A. (2016). Numerical analysis of aerodynamic noise mitigation via leading edge serrations for a rod–airfoil configuration. International Journal of Aeroacoustics, 15(8), s. 734-756. doi:10.1177/1475472X16672322
  • Aşkan, A., & Tangöz, S. (2018). The impact of aspect ratio on aerodynamic performance and flow separation behavior of a model wing composed from different profiles. Journal of Energy Systems, 2(4), s. 224-237. doi:10.30521/jes.454215
  • Avallone, F., Van Der Velden, W. C., & Ragni, D. (2017). Benefits of curved serrations on broadband trailing-edge noise reduction. Journal of Sound and Vibration, 400, s. 167-177. doi:10.1016/j.jsv.2017.04.007
  • Ayton, L. J. (2018). Analytic solution for aerodynamic noise generated by plates with spanwise-varying trailing edges. Journal of Fluid Mechanics, 849, s. 448-466. doi:10.1017/jfm.2018.431
  • Brooks, F., Stuart, D., & Marcolini, A. (1989). Airfoil Self-Noise and Prediction. Şubat 15, 2025 tarihinde https://ntrs.nasa.gov/api/citations/19890016302/downloads/19890016302.pdf adresinden alındı
  • Chen, J., Xie, J., & Lee, H.-M. (2023). Noise attenuation by half flat tip serrated trailing edge in rotating blades. Journal of Physics: Conference Series, 2489(1). doi:10.1088/1742-6596/2489/1/012022
  • Chong, T. P., & Joseph, P. F. (2013). An experimental study of airfoil instability tonal noise with trailing edge serrations. Journal of Sound and Vibration, 332(24), s. 6335-6358. doi:10.1016/j.jsv.2013.06.033
  • Gruber, M., Joseph, P., & Chong, T. (2012). On the mechanisms of serrated airfoil trailing edge noise reduction. 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). doi:10.2514/6.2011-2781
  • Howe, M. S. (1991). Noise produced by a sawtooth trailing edge. The Journal of the Acoustical Society of America, 90(1), s. 482-487. doi:10.1121/1.401273
  • Jones, L., & Sandberg, R. (2010). Numerical investigation of airfoil self-noise reduction by addition of trailing-edge serrations. 16th AIAA/CEAS Aeroacoustics Conference. doi:10.2514/6.2010-3703
  • Kholodov, P., & Moreau, S. (2021). Optimization of trailing-edge serrations with and without slits for broadband noise reduction. Journal of Sound and Vibration, 490. doi:10.1016/j.jsv.2020.115736
  • Kim, J.-H., Choi, K.-S., Lacagnina, G., Paruchuri, C., Joseph, P., Hasheminejad, S. M., . . . Pinelli, A. (2022). Aerodynamic and aeroacoustic optimization of leading-edge undulation of a NACA 65(12)-10 airfoil. AIAA Journal, 60(4), s. 2342-2353.
  • Lee, S., Ayton, L., Bertagnolio, F., Moreau, S., Chong, T. P., & Joseph, P. (2021). Turbulent boundary layer trailing-edge noise: Theory, computation, experiment, and application. Progress in Aerospace Sciences, 126. doi:10.1016/j.paerosci.2021.100737
  • Liu, W. Y. (2017). A review on wind turbine noise mechanism and de-noising techniques. Renewable Energy, 108, s. 311-320. doi:10.1016/j.renene.2017.02.034
  • Llorente, E., & Ragni, D. (2020). Trailing-edge serrations effect on the performance of a wind turbine. Renewable Energy, 147, s. 437-446. doi:10.1016/j.renene.2019.08.128
  • Lu, Y., Li, Z., Chang, X., Chuang, Z., & Xing, J. (2021). An aerodynamic optimization design study on the bio-inspired airfoil with leading-edge tubercles. Engineering Applications of Computational Fluid Mechanics, 15(1), s. 292-312. doi:10.1080/19942060.2020.1856723
  • Qaissi, K., Elsayed, O., Faqir, M., & Essadiqi, E. (2023). Aerodynamic optimization of trailing-edge-serrations for a wind turbine blade using Taguchi modified additive model. Energies, 16(3). doi:10.3390/en16031099
  • Rong, J., Jiang, Y., Murayama, Y., Ishibashi, R., M. M., & Liu, H. (2024). Trailing-edge fringes enable robust aerodynamic force production and noise suppression in an owl wing model. Bioinspiration & Biomimetics, 19(1). doi:10.1088/1748-3190/ad0aa9
  • Timothy, M. P. (2024). Biomimetic engineering: Designing solutions inspired by nature. Journal of Biological and Applied Science, 3(2), s. 45-48.
  • Wang, Y., Zhao, K., Lu, X.-Y., Song, Y.-B., & Bennett, G. J. (2019). Bio-inspired aerodynamic noise control: A bibliographic review. Applied Sciences, 9(11). doi:10.3390/app9112224
  • Xie, J., Zhu, L., & Lee, H. M. (2023). Aircraft noise reduction strategies and analysis of the effects. International Journal of Environmental Research and Public Health, 20(2). doi:10.3390/ijerph20021352
  • Yang, C., Liu, Y., Zhang, X., & Bi, C. (2024). Hybrid control of aerofoil self-noise by coupling air blowing and trailing-edge serration. Journal of Sound and Vibration, 575. doi:10.1016/j.jsv.2024.118265
  • Ye, X., Zheng, N., Zhang, R., & Li, C. (2022). Effect of serrated trailing-edge blades on aerodynamic noise of an axial fan. Journal of Mechanical Science and Technology, 36(6), s. 2937-2948. doi:10.1007/s12206-022-0526-7
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Aerospace Structures
Journal Section Research Articles
Authors

Şükran Yeşil 0009-0003-2027-8632

Melih Yıldız 0000-0002-7546-4462

Early Pub Date February 27, 2025
Publication Date February 28, 2025
Submission Date October 22, 2024
Acceptance Date February 5, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Yeşil, Ş., & Yıldız, M. (2025). Serrasyonlu kanat kenarları ve gürültü azaltma: Aerodinamik çalışmalara genel bir bakış. Havacılık Ve Uzay Çalışmaları Dergisi, 5(1), 48-64. https://doi.org/10.52995/jass.1571905