Theoretical Article
BibTex RIS Cite

NACA 0015 kanat profilinin düşük Reynolds sayılarında aerodinamik performans analizi

Year 2025, Volume: 5 Issue: 1, 65 - 85, 28.02.2025
https://doi.org/10.52995/jass.1619615

Abstract

Bu çalışma, NACA 0015 serisi simetrik bir kanat profilinin aerodinamik performansını artırmayı amaçlamaktadır. Araştırma, Ansys Fluid Flow (CFD) modülü kullanılarak yürütülmüştür. Analiz alanı 300.000 mesh elemandan oluşmaktadır. Birkaç karşılaştırmalı analiz, düşük Reynolds sayılarında ve α=-100 ile 100 arasında değişen hücum açılarında gerçekleştirilmiştir. Hücum açısındaki bir artış genellikle aerodinamik kuvvet katsayılarında (Cl, Cd ve Cl/Cd) bir yükselmeye yol açmıştır. Çalışmamızda, literatürdeki benzer çalışmalarla karşılaştırıldığında, Spalart-Allmaras türbülans modeli ve Re=1×106 kullanılarak α=800'de optimum değerlere ulaşılmıştır. Başlangıç koşuluna göre kaldırma katsayısında (Cl) %30'luk bir artış elde edilmiştir. Ayrıca kanat profilinin alt ve üst yüzeyleri arasındaki basınç farkından dolayı kaydedilen ortalama hız değerleri sırasıyla 29,6 m/s ve 18,1 m/s olmuştur. Bu bulgularla tutarlı olarak, özellikle rüzgâr türbinlerinde tercih edilen bu serinin, deneysel ortamlardan elde edilen test verileriyle gelecekte daha verimli ve etkili çalışabileceği düşünülmektedir.

References

  • Abed, K. N. (2023). The effect of location and shape of vortex generators on aerodynamic characteristics of a NACA 4415 airfoil. Al-Nahrain Journal for Engineering Sciences, 26(3), pp. 198–204. doi:10.29194/NJES.26030198
  • Abramova, K. A., Alieva, D. A., Sudakov, V. G., & Khrabrov, A. N. (2024). Modeling of the unsteady aerodynamic characteristics of the NACA 0015 airfoil from the data of numerical calculations of the flow. Fluid Dynamics, 59(1), s. 130–44. doi:10.1134/S0015462823602929
  • Ai, Q., Jawahar, H. K., & Azarpeyvand, M. (2016). Experimental investigation of aerodynamic performance of airfoils fitted with morphing trailing edges. 54th AIAA Aerospace Sciences Meeting. doi:10.2514/6.2016-1563
  • Almusawi, M., Rishack, Q., & Al-fahham, M. (2022). Effect of spanwise semicircular groove on NACA 0012 airfoil. Basrah Journal for Engineering Science, 22(2), pp. 23–26. doi:10.33971/bjes.22.2.4
  • Arif, M. S., Afzal, M. J., Javaid, F., Tayyaba, S., Ashraf, M. W., Ishraque, G. F., & Hossain, M. K. (2022). Laminar flow analysis of NACA 4412 airfoil through ANSYS fluent. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), 8, pp. 394–399. doi:10.5109/5909123
  • Ayaz Ümütlü, H. C., Kiral, Z., & Karadeniz, Z. H. (2023). Experimental investigation of NACA 4415 airfoil using vibration data for stall detection. Aircraft Engineering and Aerospace Technology, 95(10), pp. 1551–1559. doi:10.1108/AEAT-03-2023-0077
  • Bangga, G., Hutani, S., & Heramarwan, H. (2021). The effects of airfoil thickness on dynamic stall characteristics of high‐solidity vertical axis wind turbines. Advanced Theory and Simulations, 4(6). doi:10.1002/adts.202000204
  • Berger, M., Raffeiner, P., Senfter, T., & Pillei, M. (2024). A comparison between 2D DeepCFD, 2D CFD simulations and 2D/2C PIV measurements of NACA 0012 and NACA 6412 airfoils. Engineering Science and Technology, an International Journal(57). doi:10.1016/j.jestch.2024.101794
  • Bogateanu, R., Dumitrache, A., Dumitrescu, H., & Stoica, C. I. (2014). Reynolds number effects on the aerodynamic performance of small VAWTs. Scientific Bulletin-University Politehnica of Bucharest, 76(1). Retrieved Feb 21, 2025, from https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full084_828545.pdf
  • Dell’Orso, H., & Amitay, M. (2018). Parametric investigation of stall cell formation on a NACA 0015 airfoil. AIAA Journal, 56(8), pp. 3216–3228. doi:10.2514/1.J056850
  • Feng, Y. (2023). A numerical study on the optimization of an airfoil design. Theoretical and Natural Science, 11(1), pp. 199–206. doi:10.54254/2753-8818/11/20230408
  • Gopalarathnam, A., & Selig, M. S. (2001). Low-speed natural-laminar-flow airfoils: Case study in inverse airfoil design. Journal of Aircraft, 38(1), pp. 57–63. doi:10.2514/2.2734
  • Hassan, M. I., Andan, A. D., Asrar, W., & Sapardi, M. A. (2023). Large Eddy simulation of low Reynolds number flow around a NACA0015 airfoil with modified trailing edges. Journal of Advanced Research in Applied Mechanics, 112(1), pp. 57–79. doi:10.37934/aram.112.1.5779
  • He, Y., & Agarwal, R. K. (2014). Shape optimization of NREL S809 airfoil for wind turbine blades using a multiobjective genetic algorithm. International Journal of Aerospace Engineering, 2014, pp. 1–13. doi:10.1155/2014/864210
  • Hu, H., & Tamai, M. (2008). Bioinspired corrugated airfoil at low Reynolds numbers. Journal of Aircraft, 45(6), pp. 2068–2077. doi:10.2514/1.37173
  • Jawahar, K. H., Q. A., & Azarpeyvand, M. (2018). Aerodynamic and aeroacoustic performance of airfoils fitted with morphing trailing-edges. 2018 AIAA/CEAS Aeroacoustics Conference. doi:10.2514/6.2018-2815
  • Julian, J., Siswanto, S. A., Wahyuni, F., & Bunga, N. T. (2023). Analysis of the use of bio flap on NACA 4415 with numerical methods. Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, pp. 251–262. doi:10.35814/asiimetrik.v5i2.4768
  • Kaya, A. F. (2024). Investigation of a rib structure effect on the aerodynamic performance of a plain flapped symmetrical airfoil. Journal of Polytechnic, 27(3), pp. 967-974. doi:10.2339/politeknik.1159822
  • Launder, B. E. (1972). Lectures in Mathematical Models of Turbulence. Academic Press.
  • Li, L., Sherwin, S. J., & Bearman, P. W. (2002). A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies. International Journal for Numerical Methods in Fluids, 38(2), pp. 187–206. doi:10.1002/fld.216
  • Li, S., Li, Y., Yang, C., Zhang, X., Wang, Q., Li, D., . . . Wang, T. (2018). Design and testing of a LUT airfoil for straight-bladed vertical axis wind turbines. Applied Sciences, 8(11). doi:10.3390/app8112266
  • Liu, Y., Lu, L., Fang, L., & Gao, F. (2011). Modification of Spalart–Allmaras model with consideration of turbulence energy backscatter using velocity helicity. Physics Letters A, 375(24), pp. 2377–2381. doi:10.1016/j.physleta.2011.05.023
  • Mazumder, H. M. (2024). CFD Analysis of NACA Airfoils for Wind Turbine and Aerospace Applications at Low Reynolds Numbers. Bangladesh University of Engineering and Technology (BUET).
  • Medjroubi, W., Stoevesandt, B., Carmo, B., & Peinke, J. (2011). High-order numerical simulations of the flow around a heaving airfoil. Computers & Fluids, 51(1), pp. 68–84. doi:10.1016/j.compfluid.2011.07.015
  • Nepal, S., Qijun, Z., Bo, W., Kamruzzaman, M., & Adhikari, S. (2023). Aerodynamic simulation and optimization of micro aerial vehicle rotor airfoil at low Reynolds number. Asian Review of Mechanical Engineering , 12(1), pp. 24–38. doi:10.51983/arme-2023.12.1.3670
  • Obeid, S., Jha, R., & Ahmadi, G. (2017). RANS simulations of aerodynamic performance of NACA 0015 flapped airfoil. Fluids, 2(1). doi:10.3390/fluids2010002
  • Pack Melton, L., Hannon, J., Yao, C.-S., & Harris, J. (2008). Active flow control at low Reynolds numbers on a NACA 0015 airfoil. 26th AIAA Applied Aerodynamics Conference. doi:10.2514/6.2008-6407
  • Pouryoussefi, S. G., Mirzaei, M., Nazemi, M.-M., Fouladi, M., & Doostmahmoudi, A. (2016). Experimental study of Ice accretion effects on aerodynamic performance of an NACA 23012 airfoil. Chinese Journal of Aeronautics, 29(3), pp. 585-595. doi:10.1016/j.cja.2016.03.002
  • Rayhan, A. M., Hossain, M. S., Mim, R. H., & Ali, M. (2024). Computational and experimental study on the aerodynamic performance of NACA 4412 airfoil with slot and groove. Heliyon , 10(11). doi:10.1016/j.heliyon.2024.e31595
  • Saeed, F., Paraschivoiu, I., Trifu, O., Hess, M., & Gabrys, C. (2011). Inverse airfoil design method for low-speed straight-bladed Darrieus-type VAWT applications. Wind Engineering, 35(3), pp. 357–67. doi:10.1260/0309-524X.35.3.357
  • Sato, M., Asada, K., Nonomura, T., Kawai, S., & Fujii, K. (2017). Large-Eddy simulation of NACA 0015 airfoil flow at Reynolds number of 1.6×106. AIAA Journal, 55(2), pp. 673–679. doi:10.2514/1.J054963
  • Siauw, W. L., Bonnet, J. P., Tensi, J., Cordier, L., Noack, B. R., & Cattafesta, L. (2010). Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators. International Journal of Heat and Fluid Flow, 31(3), pp. 450–459.
  • Spalart, P., & Allmaras, S. (1992). A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit. doi:10.2514/6.1992-439
  • Sun, H. (2011). Wind turbine airfoil design using response surface method. Journal of Mechanical Science and Technology, 25(5), pp. 1335–40. doi:10.1007/s12206-011-0310-6
  • Tanürün, H. E., Akın, A. G., Acır, A., & Şahin, İ. (2024). Experimental numerical investigation of roughness structure in wind turbine airfoil at low Reynolds number. International Journal of Thermodynamics, 27(3), pp. 26–36. doi:10.5541/ijot.1455513
  • Zulkefli, N. F., Ahamat, M. A., Mohd Safri, N. F., Mohd Nur, N., & Mohd Rafie, A. S. (2019). Lift enhancement of NACA 4415 airfoil using biomimetic shark skin vortex generator. International Journal of Recent Technology and Engineering (IJRTE) , 8(4), pp. 9231–9234. doi:10.35940/ijrte.D9222.118419

Aerodynamic performance analysis of NACA 0015 airfoil at low Reynolds numbers

Year 2025, Volume: 5 Issue: 1, 65 - 85, 28.02.2025
https://doi.org/10.52995/jass.1619615

Abstract

This study aims to enhance the aerodynamic performance of a NACA 0015 series symmetric airfoil. The research was conducted using the Ansys Fluid Flow (CFD) module. The analysis area comprised 300,000 mesh elements. Several comparative analyses were conducted at low Reynold number (Re) and angles of attack ranging from α=-100 to 100. An increase in the angle of attack typically led to an elevation in the aerodynamic force coefficients (Cl, Cd, and Cl/Cd). In our study, the optimal values were attained at α=80, utilizing the Spalart-Allmaras turbulence model and Re=1×106, in comparison with analogous studies in literature. A 30% increase in lift coefficient (Cl) was attained relative to the initial condition. Furthermore, owing to the pressure differential between the lower and upper surfaces of the wing profile, the average velocity values recorded were 29.6 m/s and 18.1 m/s, respectively. Consistent with these findings, it is believed that this series, particularly favored in wind turbines, may operate more efficiently and effectively in the future with the test data acquired from experimental settings.

References

  • Abed, K. N. (2023). The effect of location and shape of vortex generators on aerodynamic characteristics of a NACA 4415 airfoil. Al-Nahrain Journal for Engineering Sciences, 26(3), pp. 198–204. doi:10.29194/NJES.26030198
  • Abramova, K. A., Alieva, D. A., Sudakov, V. G., & Khrabrov, A. N. (2024). Modeling of the unsteady aerodynamic characteristics of the NACA 0015 airfoil from the data of numerical calculations of the flow. Fluid Dynamics, 59(1), s. 130–44. doi:10.1134/S0015462823602929
  • Ai, Q., Jawahar, H. K., & Azarpeyvand, M. (2016). Experimental investigation of aerodynamic performance of airfoils fitted with morphing trailing edges. 54th AIAA Aerospace Sciences Meeting. doi:10.2514/6.2016-1563
  • Almusawi, M., Rishack, Q., & Al-fahham, M. (2022). Effect of spanwise semicircular groove on NACA 0012 airfoil. Basrah Journal for Engineering Science, 22(2), pp. 23–26. doi:10.33971/bjes.22.2.4
  • Arif, M. S., Afzal, M. J., Javaid, F., Tayyaba, S., Ashraf, M. W., Ishraque, G. F., & Hossain, M. K. (2022). Laminar flow analysis of NACA 4412 airfoil through ANSYS fluent. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), 8, pp. 394–399. doi:10.5109/5909123
  • Ayaz Ümütlü, H. C., Kiral, Z., & Karadeniz, Z. H. (2023). Experimental investigation of NACA 4415 airfoil using vibration data for stall detection. Aircraft Engineering and Aerospace Technology, 95(10), pp. 1551–1559. doi:10.1108/AEAT-03-2023-0077
  • Bangga, G., Hutani, S., & Heramarwan, H. (2021). The effects of airfoil thickness on dynamic stall characteristics of high‐solidity vertical axis wind turbines. Advanced Theory and Simulations, 4(6). doi:10.1002/adts.202000204
  • Berger, M., Raffeiner, P., Senfter, T., & Pillei, M. (2024). A comparison between 2D DeepCFD, 2D CFD simulations and 2D/2C PIV measurements of NACA 0012 and NACA 6412 airfoils. Engineering Science and Technology, an International Journal(57). doi:10.1016/j.jestch.2024.101794
  • Bogateanu, R., Dumitrache, A., Dumitrescu, H., & Stoica, C. I. (2014). Reynolds number effects on the aerodynamic performance of small VAWTs. Scientific Bulletin-University Politehnica of Bucharest, 76(1). Retrieved Feb 21, 2025, from https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full084_828545.pdf
  • Dell’Orso, H., & Amitay, M. (2018). Parametric investigation of stall cell formation on a NACA 0015 airfoil. AIAA Journal, 56(8), pp. 3216–3228. doi:10.2514/1.J056850
  • Feng, Y. (2023). A numerical study on the optimization of an airfoil design. Theoretical and Natural Science, 11(1), pp. 199–206. doi:10.54254/2753-8818/11/20230408
  • Gopalarathnam, A., & Selig, M. S. (2001). Low-speed natural-laminar-flow airfoils: Case study in inverse airfoil design. Journal of Aircraft, 38(1), pp. 57–63. doi:10.2514/2.2734
  • Hassan, M. I., Andan, A. D., Asrar, W., & Sapardi, M. A. (2023). Large Eddy simulation of low Reynolds number flow around a NACA0015 airfoil with modified trailing edges. Journal of Advanced Research in Applied Mechanics, 112(1), pp. 57–79. doi:10.37934/aram.112.1.5779
  • He, Y., & Agarwal, R. K. (2014). Shape optimization of NREL S809 airfoil for wind turbine blades using a multiobjective genetic algorithm. International Journal of Aerospace Engineering, 2014, pp. 1–13. doi:10.1155/2014/864210
  • Hu, H., & Tamai, M. (2008). Bioinspired corrugated airfoil at low Reynolds numbers. Journal of Aircraft, 45(6), pp. 2068–2077. doi:10.2514/1.37173
  • Jawahar, K. H., Q. A., & Azarpeyvand, M. (2018). Aerodynamic and aeroacoustic performance of airfoils fitted with morphing trailing-edges. 2018 AIAA/CEAS Aeroacoustics Conference. doi:10.2514/6.2018-2815
  • Julian, J., Siswanto, S. A., Wahyuni, F., & Bunga, N. T. (2023). Analysis of the use of bio flap on NACA 4415 with numerical methods. Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, pp. 251–262. doi:10.35814/asiimetrik.v5i2.4768
  • Kaya, A. F. (2024). Investigation of a rib structure effect on the aerodynamic performance of a plain flapped symmetrical airfoil. Journal of Polytechnic, 27(3), pp. 967-974. doi:10.2339/politeknik.1159822
  • Launder, B. E. (1972). Lectures in Mathematical Models of Turbulence. Academic Press.
  • Li, L., Sherwin, S. J., & Bearman, P. W. (2002). A moving frame of reference algorithm for fluid/structure interaction of rotating and translating bodies. International Journal for Numerical Methods in Fluids, 38(2), pp. 187–206. doi:10.1002/fld.216
  • Li, S., Li, Y., Yang, C., Zhang, X., Wang, Q., Li, D., . . . Wang, T. (2018). Design and testing of a LUT airfoil for straight-bladed vertical axis wind turbines. Applied Sciences, 8(11). doi:10.3390/app8112266
  • Liu, Y., Lu, L., Fang, L., & Gao, F. (2011). Modification of Spalart–Allmaras model with consideration of turbulence energy backscatter using velocity helicity. Physics Letters A, 375(24), pp. 2377–2381. doi:10.1016/j.physleta.2011.05.023
  • Mazumder, H. M. (2024). CFD Analysis of NACA Airfoils for Wind Turbine and Aerospace Applications at Low Reynolds Numbers. Bangladesh University of Engineering and Technology (BUET).
  • Medjroubi, W., Stoevesandt, B., Carmo, B., & Peinke, J. (2011). High-order numerical simulations of the flow around a heaving airfoil. Computers & Fluids, 51(1), pp. 68–84. doi:10.1016/j.compfluid.2011.07.015
  • Nepal, S., Qijun, Z., Bo, W., Kamruzzaman, M., & Adhikari, S. (2023). Aerodynamic simulation and optimization of micro aerial vehicle rotor airfoil at low Reynolds number. Asian Review of Mechanical Engineering , 12(1), pp. 24–38. doi:10.51983/arme-2023.12.1.3670
  • Obeid, S., Jha, R., & Ahmadi, G. (2017). RANS simulations of aerodynamic performance of NACA 0015 flapped airfoil. Fluids, 2(1). doi:10.3390/fluids2010002
  • Pack Melton, L., Hannon, J., Yao, C.-S., & Harris, J. (2008). Active flow control at low Reynolds numbers on a NACA 0015 airfoil. 26th AIAA Applied Aerodynamics Conference. doi:10.2514/6.2008-6407
  • Pouryoussefi, S. G., Mirzaei, M., Nazemi, M.-M., Fouladi, M., & Doostmahmoudi, A. (2016). Experimental study of Ice accretion effects on aerodynamic performance of an NACA 23012 airfoil. Chinese Journal of Aeronautics, 29(3), pp. 585-595. doi:10.1016/j.cja.2016.03.002
  • Rayhan, A. M., Hossain, M. S., Mim, R. H., & Ali, M. (2024). Computational and experimental study on the aerodynamic performance of NACA 4412 airfoil with slot and groove. Heliyon , 10(11). doi:10.1016/j.heliyon.2024.e31595
  • Saeed, F., Paraschivoiu, I., Trifu, O., Hess, M., & Gabrys, C. (2011). Inverse airfoil design method for low-speed straight-bladed Darrieus-type VAWT applications. Wind Engineering, 35(3), pp. 357–67. doi:10.1260/0309-524X.35.3.357
  • Sato, M., Asada, K., Nonomura, T., Kawai, S., & Fujii, K. (2017). Large-Eddy simulation of NACA 0015 airfoil flow at Reynolds number of 1.6×106. AIAA Journal, 55(2), pp. 673–679. doi:10.2514/1.J054963
  • Siauw, W. L., Bonnet, J. P., Tensi, J., Cordier, L., Noack, B. R., & Cattafesta, L. (2010). Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators. International Journal of Heat and Fluid Flow, 31(3), pp. 450–459.
  • Spalart, P., & Allmaras, S. (1992). A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit. doi:10.2514/6.1992-439
  • Sun, H. (2011). Wind turbine airfoil design using response surface method. Journal of Mechanical Science and Technology, 25(5), pp. 1335–40. doi:10.1007/s12206-011-0310-6
  • Tanürün, H. E., Akın, A. G., Acır, A., & Şahin, İ. (2024). Experimental numerical investigation of roughness structure in wind turbine airfoil at low Reynolds number. International Journal of Thermodynamics, 27(3), pp. 26–36. doi:10.5541/ijot.1455513
  • Zulkefli, N. F., Ahamat, M. A., Mohd Safri, N. F., Mohd Nur, N., & Mohd Rafie, A. S. (2019). Lift enhancement of NACA 4415 airfoil using biomimetic shark skin vortex generator. International Journal of Recent Technology and Engineering (IJRTE) , 8(4), pp. 9231–9234. doi:10.35940/ijrte.D9222.118419
There are 36 citations in total.

Details

Primary Language English
Subjects Aerospace Structures
Journal Section Research Articles
Authors

Mustafa Buğday 0000-0003-4413-509X

Early Pub Date February 27, 2025
Publication Date February 28, 2025
Submission Date January 14, 2025
Acceptance Date February 12, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Buğday, M. (2025). Aerodynamic performance analysis of NACA 0015 airfoil at low Reynolds numbers. Havacılık Ve Uzay Çalışmaları Dergisi, 5(1), 65-85. https://doi.org/10.52995/jass.1619615