Review Article
BibTex RIS Cite
Year 2022, , 41 - 50, 31.12.2022
https://doi.org/10.54559/jauist.1218507

Abstract

References

  • [1] Atçeken, M. and Dirik, S. 2014. On the geometry of pseudo-slant submanifolds of a kenmotsu manifold, Gulf Journal of Mathematics 2: 51–66.
  • [2] Atçeken, M. and Hui, S. K. 2013. Slant and pseudo-slant submanifolds in (lCS)n-manifolds, Czechoslovak M.J. 63: 177–190.
  • [3] Cabrerizo, J. L., Carriazo, A., M., F. L. and Fernandez, M. 1999. Slant submanifolds in sasakian manifolds, Geomeatriae Dedicata 78: 183–199.
  • [4] Cabrerizo, J. L., Carriazo, A., M., F. L. and Fernandez, M. 2000. Slant submanifolds in sasakian manifolds, Glasgow Math, J. 42: 125–138.
  • [5] Chen, B. 1990a. Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, Belgium, View at Zentralblatt Math.
  • [6] Chen, B. 1990b. Slant immersions, Austral. Math. Soc. 41: 135–147.
  • [7] De, U. C. and Sarkar, A. 2004. On pseudo-slant submanifolds of trans sasakian manifolds slant submanifolds, Procedings of the Estonian A.S 60: 1–11.
  • [8] Dirik, S., Atçeken, M. and Yıldırım, U. 2017. Contact pseude-slant submanifold of a normal paracontact metric manifolds, International Journal of Applied Mathemaatics and Statistics 56: 33–41.
  • [9] Dirik, S., Atçeken, M. and Yıldırım, U. 2018. On the geometry of contact pseudo-slant submanifolds in an (lCS)n-manifold, International Journal of Applied Mathematics and Statistics 2: 96–109.
  • [10] Dirik, S., Yıldırım, U. 2022. Characterization of contact pseudo-slant submanifolds of a para Kenmotsu manifold, Journal of Amasya University the Institute of Sciences and Technology 3: 49–59.
  • [11] Hui, S., Atçeken, M. and Pal, T. 2017. Warped product pseudo-slant submanifolds of (lCS)n-manifolds, New Trens in Math. Sciences 5: 204–212.
  • [12] Khan, V. A. and Khan, M. A. 2007. Pseudo-slant submanifolds of a sasakian manifold, Indian J. prue appl. Math. 38: 31–42.
  • [13] Lotta, A. 1996. Slant submanifolds in contact geometry, Bulletin Mathematical Society Roumanie 39: 183–198.
  • [14] Matsumoto, K. and Mihai, I. 1988. On a cartein transformation in a lorentzian para sasakian manifold, Tensor, New Ser. 47: 189–197.
  • [15] Mihai, I. and Cheen, B. 2009. classificiation of a quasi-minimal slant surfaces in lorentzian complex space forms, Acta Math. Hung. 122: 307–328.
  • [16] Papaghuic 2009. Semi-slant submanifolds of a kaehlarian manifold, An. St. Univ. Al. I. Cuza. Univ. 40: 55–61.
  • [17] Shaikh, A. A. 2003. On lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43: 305–314.
  • [18] Shaikh, A. A. and Bahishya, K. 2005. On concircular structure spacetimes, J. Math. Stat. 1: 129–132.
  • [19] Shaikh, Kim, H. and Hui, S. 2011. On lorentzian quasi-einstein manifolds, J. Korean Math. Soc. 48: 669–689.
  • [20] Yano, K. 1940. Concircular geometry. 1. concircular transformations., Proc. Tmp. Acad. Jop. 16: 195–200.

On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds

Year 2022, , 41 - 50, 31.12.2022
https://doi.org/10.54559/jauist.1218507

Abstract

In this study, we investigate the differential geometry of contact pseudo-slant submanifolds of a (LCS)n -manifold. The necessary and sufficient conditions for contact pseudo-slant submanifolds of a (LCS)n-manifold are given.

References

  • [1] Atçeken, M. and Dirik, S. 2014. On the geometry of pseudo-slant submanifolds of a kenmotsu manifold, Gulf Journal of Mathematics 2: 51–66.
  • [2] Atçeken, M. and Hui, S. K. 2013. Slant and pseudo-slant submanifolds in (lCS)n-manifolds, Czechoslovak M.J. 63: 177–190.
  • [3] Cabrerizo, J. L., Carriazo, A., M., F. L. and Fernandez, M. 1999. Slant submanifolds in sasakian manifolds, Geomeatriae Dedicata 78: 183–199.
  • [4] Cabrerizo, J. L., Carriazo, A., M., F. L. and Fernandez, M. 2000. Slant submanifolds in sasakian manifolds, Glasgow Math, J. 42: 125–138.
  • [5] Chen, B. 1990a. Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, Belgium, View at Zentralblatt Math.
  • [6] Chen, B. 1990b. Slant immersions, Austral. Math. Soc. 41: 135–147.
  • [7] De, U. C. and Sarkar, A. 2004. On pseudo-slant submanifolds of trans sasakian manifolds slant submanifolds, Procedings of the Estonian A.S 60: 1–11.
  • [8] Dirik, S., Atçeken, M. and Yıldırım, U. 2017. Contact pseude-slant submanifold of a normal paracontact metric manifolds, International Journal of Applied Mathemaatics and Statistics 56: 33–41.
  • [9] Dirik, S., Atçeken, M. and Yıldırım, U. 2018. On the geometry of contact pseudo-slant submanifolds in an (lCS)n-manifold, International Journal of Applied Mathematics and Statistics 2: 96–109.
  • [10] Dirik, S., Yıldırım, U. 2022. Characterization of contact pseudo-slant submanifolds of a para Kenmotsu manifold, Journal of Amasya University the Institute of Sciences and Technology 3: 49–59.
  • [11] Hui, S., Atçeken, M. and Pal, T. 2017. Warped product pseudo-slant submanifolds of (lCS)n-manifolds, New Trens in Math. Sciences 5: 204–212.
  • [12] Khan, V. A. and Khan, M. A. 2007. Pseudo-slant submanifolds of a sasakian manifold, Indian J. prue appl. Math. 38: 31–42.
  • [13] Lotta, A. 1996. Slant submanifolds in contact geometry, Bulletin Mathematical Society Roumanie 39: 183–198.
  • [14] Matsumoto, K. and Mihai, I. 1988. On a cartein transformation in a lorentzian para sasakian manifold, Tensor, New Ser. 47: 189–197.
  • [15] Mihai, I. and Cheen, B. 2009. classificiation of a quasi-minimal slant surfaces in lorentzian complex space forms, Acta Math. Hung. 122: 307–328.
  • [16] Papaghuic 2009. Semi-slant submanifolds of a kaehlarian manifold, An. St. Univ. Al. I. Cuza. Univ. 40: 55–61.
  • [17] Shaikh, A. A. 2003. On lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43: 305–314.
  • [18] Shaikh, A. A. and Bahishya, K. 2005. On concircular structure spacetimes, J. Math. Stat. 1: 129–132.
  • [19] Shaikh, Kim, H. and Hui, S. 2011. On lorentzian quasi-einstein manifolds, J. Korean Math. Soc. 48: 669–689.
  • [20] Yano, K. 1940. Concircular geometry. 1. concircular transformations., Proc. Tmp. Acad. Jop. 16: 195–200.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Süleyman Dirik

Ümit Çelik

Publication Date December 31, 2022
Published in Issue Year 2022

Cite

APA Dirik, S., & Çelik, Ü. (2022). On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds. Journal of Amasya University the Institute of Sciences and Technology, 3(2), 41-50. https://doi.org/10.54559/jauist.1218507
AMA Dirik S, Çelik Ü. On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds. J. Amasya Univ. Inst. Sci. Technol. December 2022;3(2):41-50. doi:10.54559/jauist.1218507
Chicago Dirik, Süleyman, and Ümit Çelik. “On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds”. Journal of Amasya University the Institute of Sciences and Technology 3, no. 2 (December 2022): 41-50. https://doi.org/10.54559/jauist.1218507.
EndNote Dirik S, Çelik Ü (December 1, 2022) On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds. Journal of Amasya University the Institute of Sciences and Technology 3 2 41–50.
IEEE S. Dirik and Ü. Çelik, “On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds”, J. Amasya Univ. Inst. Sci. Technol., vol. 3, no. 2, pp. 41–50, 2022, doi: 10.54559/jauist.1218507.
ISNAD Dirik, Süleyman - Çelik, Ümit. “On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds”. Journal of Amasya University the Institute of Sciences and Technology 3/2 (December 2022), 41-50. https://doi.org/10.54559/jauist.1218507.
JAMA Dirik S, Çelik Ü. On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds. J. Amasya Univ. Inst. Sci. Technol. 2022;3:41–50.
MLA Dirik, Süleyman and Ümit Çelik. “On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds”. Journal of Amasya University the Institute of Sciences and Technology, vol. 3, no. 2, 2022, pp. 41-50, doi:10.54559/jauist.1218507.
Vancouver Dirik S, Çelik Ü. On Contact Pseudo-Slant Submanifolds in (LCS)n-Manifolds. J. Amasya Univ. Inst. Sci. Technol. 2022;3(2):41-50.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).