Research Article
BibTex RIS Cite
Year 2024, , 72 - 78, 31.12.2024
https://doi.org/10.54559/jauist.1580693

Abstract

References

  • H. Unz, Schlömilch’s integral equation, Journal of Atmospheric and Terrestrial Physics 25 (2) (1963) 101–102.
  • P. J. D. Gething, R. G. Maliphant, Unz’s application of Schlömilch’s integral equation to oblique incidence observations, Journal of Atmospheric and Terrestrial Physics 29 (5) (1967) 599–600.
  • S. De, B. Sarkar, M. Mal, M. De, B. Ghosh, S. Adhikari, On Schlömilch’s integral equation for the ionospheric plasma, Japanese Journal of Applied Physics 33 (1-7A) (1994) 4154–4156.
  • L. Bougoffa, M. Al-Haqbani, R. C. Rach, A convenient technique for solving integral equations of the first kind by the Adomian decomposition method, Kybernetes 41(1/2) (2012) 145–156.
  • A. Altürk, On the solutions of Schlo¨milch’s integral equations, Celal Bayar University Journal of Science 13 (3) (2017) 671–676.
  • A. Altürk, H. Arabacıoğlu, A new modification to homotopy perturbation method for solving Schlömilch’s integral equation, International Journal of Advances in Applied Mathematics and Mechanics 5 (1) (2017) 40–48.
  • A. Altürk, A simple and efficient approach based on Laguerre polynomials for solving Schlömilch’s integral equation, Journal of Inequalities and Special Functions 14 (1) (2023) 37–50.
  • A. M. Wazwaz, Linear and nonlinear integral equations: methods and applications, Heidelberg University Publishing, Berlin, 2011.
  • A. M. Wazwaz, Solving Schlömilch’s integral equation by the Regularization-Adomian method, Romanian Journal of Physics 60 (1-2) (2015) 56–71.
  • P. Kourosh, M. Delkhosh, Solving the nonlinear Schlömilch’s integral equation arising in ionospheric problems, Afrika Matematika 28 (3) (2017) 459–480.
  • M. A. Al-Jawary, G. H. Radhi, J. Ravnik, Two efficient methods for solving Schlömilch’s integral equation, International Journal of Intelligent Computing and Cybernetics 10 (3) (2017) 287–309.
  • P. J. Ponzo, N. Wax, Existence and stability of periodic solutions of y¨ − µF (y˙) + y = 0, Journal of Mathematical Analysis and Applications 38 (3) (1972) 793–804.
  • A. D. D. Craik, Wave interactions and fluid flows, Cambridge University Press, Cambridge, 1986.
  • J. H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering 178 (3-4) (1999) 257–262.
  • S. J. Liao, An approximate solution technique not depending on small parameters: A special example, International Journal of Non-Linear Mechanics 30 (3) (1995) 371–380.
  • J. H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International Journal of Non-Linear Mechanics 35 (1) (2000) 37–43.
  • J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation 135 (1) (2003) 73–79.
  • J. H. He, Recent development of the homotopy perturbation method, Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center 31 (2008) 205–209.
  • M. A. Noor, Iterative methods for nonlinear equations using homotopy perturbation technique, Applied Mathematics & Information Sciences 4 (2) (2010) 227–235.
  • L. Yuzhen, Numerical methods for integral equations, Doctoral Dissertation Syracuse University (2023) New York.
  • A. Golbabai, B. Keremati, Modified homotopy perturbation method for solving Fredholm integral equations, Chaos, Solitons & Fractals 37 (2008) 1528–1537.
  • J. S. Nadjafi, M. Tamamgar, Modified homotopy perturbation method for solving integral equations, International Journal of Modern Physics B 24 (24) (2010) 4741–4746.
  • M. Sotoodeh, M. A. F. Araghi, A new modified homotopy perturbation method for solving linear second-order Fredholm integro-differential equations, International Journal of Mathematical Modelling & Computations 2 (4) (2012) 299–308.

An efficient method for solving Schlömilch-type integral equations

Year 2024, , 72 - 78, 31.12.2024
https://doi.org/10.54559/jauist.1580693

Abstract

Schlömilch integral equations have many applications in terrestrial physics and serve as useful tools for various ionospheric problems. Recently, researchers have investigated Schlömilch-type integral equations. Unlike Schlömilch integral equations, there are only a few works in the literature that discuss the classification and solution methods for Schlömilch -type equations. In this study, we mainly focus on introducing an efficient method based on a modified homotopy approach for solving certain Schlömilch-type equations. To demonstrate the efficiency and simplicity of the proposed algorithm, we also present some extensions that enable the solution of important application-related problems.

Ethical Statement

No approval from the Board of Ethics is required.

References

  • H. Unz, Schlömilch’s integral equation, Journal of Atmospheric and Terrestrial Physics 25 (2) (1963) 101–102.
  • P. J. D. Gething, R. G. Maliphant, Unz’s application of Schlömilch’s integral equation to oblique incidence observations, Journal of Atmospheric and Terrestrial Physics 29 (5) (1967) 599–600.
  • S. De, B. Sarkar, M. Mal, M. De, B. Ghosh, S. Adhikari, On Schlömilch’s integral equation for the ionospheric plasma, Japanese Journal of Applied Physics 33 (1-7A) (1994) 4154–4156.
  • L. Bougoffa, M. Al-Haqbani, R. C. Rach, A convenient technique for solving integral equations of the first kind by the Adomian decomposition method, Kybernetes 41(1/2) (2012) 145–156.
  • A. Altürk, On the solutions of Schlo¨milch’s integral equations, Celal Bayar University Journal of Science 13 (3) (2017) 671–676.
  • A. Altürk, H. Arabacıoğlu, A new modification to homotopy perturbation method for solving Schlömilch’s integral equation, International Journal of Advances in Applied Mathematics and Mechanics 5 (1) (2017) 40–48.
  • A. Altürk, A simple and efficient approach based on Laguerre polynomials for solving Schlömilch’s integral equation, Journal of Inequalities and Special Functions 14 (1) (2023) 37–50.
  • A. M. Wazwaz, Linear and nonlinear integral equations: methods and applications, Heidelberg University Publishing, Berlin, 2011.
  • A. M. Wazwaz, Solving Schlömilch’s integral equation by the Regularization-Adomian method, Romanian Journal of Physics 60 (1-2) (2015) 56–71.
  • P. Kourosh, M. Delkhosh, Solving the nonlinear Schlömilch’s integral equation arising in ionospheric problems, Afrika Matematika 28 (3) (2017) 459–480.
  • M. A. Al-Jawary, G. H. Radhi, J. Ravnik, Two efficient methods for solving Schlömilch’s integral equation, International Journal of Intelligent Computing and Cybernetics 10 (3) (2017) 287–309.
  • P. J. Ponzo, N. Wax, Existence and stability of periodic solutions of y¨ − µF (y˙) + y = 0, Journal of Mathematical Analysis and Applications 38 (3) (1972) 793–804.
  • A. D. D. Craik, Wave interactions and fluid flows, Cambridge University Press, Cambridge, 1986.
  • J. H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering 178 (3-4) (1999) 257–262.
  • S. J. Liao, An approximate solution technique not depending on small parameters: A special example, International Journal of Non-Linear Mechanics 30 (3) (1995) 371–380.
  • J. H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International Journal of Non-Linear Mechanics 35 (1) (2000) 37–43.
  • J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation 135 (1) (2003) 73–79.
  • J. H. He, Recent development of the homotopy perturbation method, Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center 31 (2008) 205–209.
  • M. A. Noor, Iterative methods for nonlinear equations using homotopy perturbation technique, Applied Mathematics & Information Sciences 4 (2) (2010) 227–235.
  • L. Yuzhen, Numerical methods for integral equations, Doctoral Dissertation Syracuse University (2023) New York.
  • A. Golbabai, B. Keremati, Modified homotopy perturbation method for solving Fredholm integral equations, Chaos, Solitons & Fractals 37 (2008) 1528–1537.
  • J. S. Nadjafi, M. Tamamgar, Modified homotopy perturbation method for solving integral equations, International Journal of Modern Physics B 24 (24) (2010) 4741–4746.
  • M. Sotoodeh, M. A. F. Araghi, A new modified homotopy perturbation method for solving linear second-order Fredholm integro-differential equations, International Journal of Mathematical Modelling & Computations 2 (4) (2012) 299–308.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Articles
Authors

Ahmet Altürk 0000-0002-5220-0608

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date November 6, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024

Cite

APA Altürk, A. (2024). An efficient method for solving Schlömilch-type integral equations. Journal of Amasya University the Institute of Sciences and Technology, 5(2), 72-78. https://doi.org/10.54559/jauist.1580693
AMA Altürk A. An efficient method for solving Schlömilch-type integral equations. J. Amasya Univ. Inst. Sci. Technol. December 2024;5(2):72-78. doi:10.54559/jauist.1580693
Chicago Altürk, Ahmet. “An Efficient Method for Solving Schlömilch-Type Integral Equations”. Journal of Amasya University the Institute of Sciences and Technology 5, no. 2 (December 2024): 72-78. https://doi.org/10.54559/jauist.1580693.
EndNote Altürk A (December 1, 2024) An efficient method for solving Schlömilch-type integral equations. Journal of Amasya University the Institute of Sciences and Technology 5 2 72–78.
IEEE A. Altürk, “An efficient method for solving Schlömilch-type integral equations”, J. Amasya Univ. Inst. Sci. Technol., vol. 5, no. 2, pp. 72–78, 2024, doi: 10.54559/jauist.1580693.
ISNAD Altürk, Ahmet. “An Efficient Method for Solving Schlömilch-Type Integral Equations”. Journal of Amasya University the Institute of Sciences and Technology 5/2 (December 2024), 72-78. https://doi.org/10.54559/jauist.1580693.
JAMA Altürk A. An efficient method for solving Schlömilch-type integral equations. J. Amasya Univ. Inst. Sci. Technol. 2024;5:72–78.
MLA Altürk, Ahmet. “An Efficient Method for Solving Schlömilch-Type Integral Equations”. Journal of Amasya University the Institute of Sciences and Technology, vol. 5, no. 2, 2024, pp. 72-78, doi:10.54559/jauist.1580693.
Vancouver Altürk A. An efficient method for solving Schlömilch-type integral equations. J. Amasya Univ. Inst. Sci. Technol. 2024;5(2):72-8.