Theoretical Article
BibTex RIS Cite
Year 2022, Volume: 3 Issue: 2, 31 - 40, 31.12.2022
https://doi.org/10.54559/jauist.1207927

Abstract

References

  • [1] Akyel. T. (2022). Estimates for λ-Spirallike Functions of Complex Order on the Boundary, Ukrainian Mathematical Journal, 74, 1-14.
  • [2] Azeroğlu, T. A. and Örnek, B. N. (2013). A refined Schwarz inequality on the boundary, Complex Variab. Elliptic Equa., 58, 571-577.
  • [3] Boas, H. P. (2010). Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly, 117, 770-785.
  • [4] Dubinin, V. N. (2004). The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci., 122, 3623-3629.
  • [5] Golusin G. M. (1996). Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow.
  • [6] Jack, I. S. (1971). Functions starlike and convex of order α, J. London Math. Soc., 3, 469-474.
  • [7] Mateljevic, M., Mutavdžć, N. and Örnek B. N. (2022), Estimates for some classes of holomorphic functions in the unit disc, Appl. Anal. Discrete Math., 16, 111-131.
  • [8] Mercer, P. R. (2018). Boundary Schwarz inequalities arising from Rogosinski’s lemma, Journal of Classical Analysis, 12, 93-97.
  • [9] Mercer, P. R. (2018). An improved Schwarz Lemma at the boundary, Open Mathematics, 16, 1140-1144.
  • [10] Osserman, R. (2000). A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc., 128, 3513-3517.
  • [11] Örnek, B. N. (2016). The Carathéodory Inequality on the Boundary for Holomorphic Functions in the Unit Disc, Journal of Mathematical Physics, Analysis, Geometry, 12(4), 287-301.
  • [12] Örnek, B. N. and Düzenli, T. (2018). Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs, 65(9), 1149-1153.
  • [13] Örnek B. N., Aydemir S. B., Düzenli T. and Özak B. (2022). Some remarks on activation function design in complex extreme learning using Schwarz lemma, Neurocomputing, 492, 23-33.
  • [14] Pommerenke, Ch. (1992). Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. [15] Unkelbach, H. (1938). Über die Randverzerrung bei konformer Abbildung, Math. Z., 43, 739-742.

SOME RESULTS ON JACK’S LEMMA FOR ANALYTIC FUNCTIONS

Year 2022, Volume: 3 Issue: 2, 31 - 40, 31.12.2022
https://doi.org/10.54559/jauist.1207927

Abstract

In this paper, an upper bound will be found for the second coefficient in the Taylor expansion of the analytical function $p(z)$ using the Jack lemma. Also, the modulus of the angular derivative of the $I_{f}(z)=\frac{zp^{\prime }(z)}{p(z)}$ function on the unit disc will be estimated from below.

References

  • [1] Akyel. T. (2022). Estimates for λ-Spirallike Functions of Complex Order on the Boundary, Ukrainian Mathematical Journal, 74, 1-14.
  • [2] Azeroğlu, T. A. and Örnek, B. N. (2013). A refined Schwarz inequality on the boundary, Complex Variab. Elliptic Equa., 58, 571-577.
  • [3] Boas, H. P. (2010). Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly, 117, 770-785.
  • [4] Dubinin, V. N. (2004). The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci., 122, 3623-3629.
  • [5] Golusin G. M. (1996). Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow.
  • [6] Jack, I. S. (1971). Functions starlike and convex of order α, J. London Math. Soc., 3, 469-474.
  • [7] Mateljevic, M., Mutavdžć, N. and Örnek B. N. (2022), Estimates for some classes of holomorphic functions in the unit disc, Appl. Anal. Discrete Math., 16, 111-131.
  • [8] Mercer, P. R. (2018). Boundary Schwarz inequalities arising from Rogosinski’s lemma, Journal of Classical Analysis, 12, 93-97.
  • [9] Mercer, P. R. (2018). An improved Schwarz Lemma at the boundary, Open Mathematics, 16, 1140-1144.
  • [10] Osserman, R. (2000). A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc., 128, 3513-3517.
  • [11] Örnek, B. N. (2016). The Carathéodory Inequality on the Boundary for Holomorphic Functions in the Unit Disc, Journal of Mathematical Physics, Analysis, Geometry, 12(4), 287-301.
  • [12] Örnek, B. N. and Düzenli, T. (2018). Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs, 65(9), 1149-1153.
  • [13] Örnek B. N., Aydemir S. B., Düzenli T. and Özak B. (2022). Some remarks on activation function design in complex extreme learning using Schwarz lemma, Neurocomputing, 492, 23-33.
  • [14] Pommerenke, Ch. (1992). Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. [15] Unkelbach, H. (1938). Über die Randverzerrung bei konformer Abbildung, Math. Z., 43, 739-742.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Bülent Nafi Örnek

Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 3 Issue: 2

Cite

APA Örnek, B. N. (2022). SOME RESULTS ON JACK’S LEMMA FOR ANALYTIC FUNCTIONS. Journal of Amasya University the Institute of Sciences and Technology, 3(2), 31-40. https://doi.org/10.54559/jauist.1207927
AMA Örnek BN. SOME RESULTS ON JACK’S LEMMA FOR ANALYTIC FUNCTIONS. J. Amasya Univ. Inst. Sci. Technol. December 2022;3(2):31-40. doi:10.54559/jauist.1207927
Chicago Örnek, Bülent Nafi. “SOME RESULTS ON JACK’S LEMMA FOR ANALYTIC FUNCTIONS”. Journal of Amasya University the Institute of Sciences and Technology 3, no. 2 (December 2022): 31-40. https://doi.org/10.54559/jauist.1207927.
EndNote Örnek BN (December 1, 2022) SOME RESULTS ON JACK’S LEMMA FOR ANALYTIC FUNCTIONS. Journal of Amasya University the Institute of Sciences and Technology 3 2 31–40.
IEEE B. N. Örnek, “SOME RESULTS ON JACK’S LEMMA FOR ANALYTIC FUNCTIONS”, J. Amasya Univ. Inst. Sci. Technol., vol. 3, no. 2, pp. 31–40, 2022, doi: 10.54559/jauist.1207927.
ISNAD Örnek, Bülent Nafi. “SOME RESULTS ON JACK’S LEMMA FOR ANALYTIC FUNCTIONS”. Journal of Amasya University the Institute of Sciences and Technology 3/2 (December 2022), 31-40. https://doi.org/10.54559/jauist.1207927.
JAMA Örnek BN. SOME RESULTS ON JACK’S LEMMA FOR ANALYTIC FUNCTIONS. J. Amasya Univ. Inst. Sci. Technol. 2022;3:31–40.
MLA Örnek, Bülent Nafi. “SOME RESULTS ON JACK’S LEMMA FOR ANALYTIC FUNCTIONS”. Journal of Amasya University the Institute of Sciences and Technology, vol. 3, no. 2, 2022, pp. 31-40, doi:10.54559/jauist.1207927.
Vancouver Örnek BN. SOME RESULTS ON JACK’S LEMMA FOR ANALYTIC FUNCTIONS. J. Amasya Univ. Inst. Sci. Technol. 2022;3(2):31-40.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).