Research Article
BibTex RIS Cite
Year 2024, Volume: 5 Issue: 2, 72 - 78, 31.12.2024
https://doi.org/10.54559/jauist.1580693

Abstract

References

  • H. Unz, Schlömilch’s integral equation, Journal of Atmospheric and Terrestrial Physics 25 (2) (1963) 101–102.
  • P. J. D. Gething, R. G. Maliphant, Unz’s application of Schlömilch’s integral equation to oblique incidence observations, Journal of Atmospheric and Terrestrial Physics 29 (5) (1967) 599–600.
  • S. De, B. Sarkar, M. Mal, M. De, B. Ghosh, S. Adhikari, On Schlömilch’s integral equation for the ionospheric plasma, Japanese Journal of Applied Physics 33 (1-7A) (1994) 4154–4156.
  • L. Bougoffa, M. Al-Haqbani, R. C. Rach, A convenient technique for solving integral equations of the first kind by the Adomian decomposition method, Kybernetes 41(1/2) (2012) 145–156.
  • A. Altürk, On the solutions of Schlo¨milch’s integral equations, Celal Bayar University Journal of Science 13 (3) (2017) 671–676.
  • A. Altürk, H. Arabacıoğlu, A new modification to homotopy perturbation method for solving Schlömilch’s integral equation, International Journal of Advances in Applied Mathematics and Mechanics 5 (1) (2017) 40–48.
  • A. Altürk, A simple and efficient approach based on Laguerre polynomials for solving Schlömilch’s integral equation, Journal of Inequalities and Special Functions 14 (1) (2023) 37–50.
  • A. M. Wazwaz, Linear and nonlinear integral equations: methods and applications, Heidelberg University Publishing, Berlin, 2011.
  • A. M. Wazwaz, Solving Schlömilch’s integral equation by the Regularization-Adomian method, Romanian Journal of Physics 60 (1-2) (2015) 56–71.
  • P. Kourosh, M. Delkhosh, Solving the nonlinear Schlömilch’s integral equation arising in ionospheric problems, Afrika Matematika 28 (3) (2017) 459–480.
  • M. A. Al-Jawary, G. H. Radhi, J. Ravnik, Two efficient methods for solving Schlömilch’s integral equation, International Journal of Intelligent Computing and Cybernetics 10 (3) (2017) 287–309.
  • P. J. Ponzo, N. Wax, Existence and stability of periodic solutions of y¨ − µF (y˙) + y = 0, Journal of Mathematical Analysis and Applications 38 (3) (1972) 793–804.
  • A. D. D. Craik, Wave interactions and fluid flows, Cambridge University Press, Cambridge, 1986.
  • J. H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering 178 (3-4) (1999) 257–262.
  • S. J. Liao, An approximate solution technique not depending on small parameters: A special example, International Journal of Non-Linear Mechanics 30 (3) (1995) 371–380.
  • J. H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International Journal of Non-Linear Mechanics 35 (1) (2000) 37–43.
  • J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation 135 (1) (2003) 73–79.
  • J. H. He, Recent development of the homotopy perturbation method, Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center 31 (2008) 205–209.
  • M. A. Noor, Iterative methods for nonlinear equations using homotopy perturbation technique, Applied Mathematics & Information Sciences 4 (2) (2010) 227–235.
  • L. Yuzhen, Numerical methods for integral equations, Doctoral Dissertation Syracuse University (2023) New York.
  • A. Golbabai, B. Keremati, Modified homotopy perturbation method for solving Fredholm integral equations, Chaos, Solitons & Fractals 37 (2008) 1528–1537.
  • J. S. Nadjafi, M. Tamamgar, Modified homotopy perturbation method for solving integral equations, International Journal of Modern Physics B 24 (24) (2010) 4741–4746.
  • M. Sotoodeh, M. A. F. Araghi, A new modified homotopy perturbation method for solving linear second-order Fredholm integro-differential equations, International Journal of Mathematical Modelling & Computations 2 (4) (2012) 299–308.

An efficient method for solving Schlömilch-type integral equations

Year 2024, Volume: 5 Issue: 2, 72 - 78, 31.12.2024
https://doi.org/10.54559/jauist.1580693

Abstract

Schlömilch integral equations have many applications in terrestrial physics and serve as useful tools for various ionospheric problems. Recently, researchers have investigated Schlömilch-type integral equations. Unlike Schlömilch integral equations, there are only a few works in the literature that discuss the classification and solution methods for Schlömilch -type equations. In this study, we mainly focus on introducing an efficient method based on a modified homotopy approach for solving certain Schlömilch-type equations. To demonstrate the efficiency and simplicity of the proposed algorithm, we also present some extensions that enable the solution of important application-related problems.

Ethical Statement

No approval from the Board of Ethics is required.

References

  • H. Unz, Schlömilch’s integral equation, Journal of Atmospheric and Terrestrial Physics 25 (2) (1963) 101–102.
  • P. J. D. Gething, R. G. Maliphant, Unz’s application of Schlömilch’s integral equation to oblique incidence observations, Journal of Atmospheric and Terrestrial Physics 29 (5) (1967) 599–600.
  • S. De, B. Sarkar, M. Mal, M. De, B. Ghosh, S. Adhikari, On Schlömilch’s integral equation for the ionospheric plasma, Japanese Journal of Applied Physics 33 (1-7A) (1994) 4154–4156.
  • L. Bougoffa, M. Al-Haqbani, R. C. Rach, A convenient technique for solving integral equations of the first kind by the Adomian decomposition method, Kybernetes 41(1/2) (2012) 145–156.
  • A. Altürk, On the solutions of Schlo¨milch’s integral equations, Celal Bayar University Journal of Science 13 (3) (2017) 671–676.
  • A. Altürk, H. Arabacıoğlu, A new modification to homotopy perturbation method for solving Schlömilch’s integral equation, International Journal of Advances in Applied Mathematics and Mechanics 5 (1) (2017) 40–48.
  • A. Altürk, A simple and efficient approach based on Laguerre polynomials for solving Schlömilch’s integral equation, Journal of Inequalities and Special Functions 14 (1) (2023) 37–50.
  • A. M. Wazwaz, Linear and nonlinear integral equations: methods and applications, Heidelberg University Publishing, Berlin, 2011.
  • A. M. Wazwaz, Solving Schlömilch’s integral equation by the Regularization-Adomian method, Romanian Journal of Physics 60 (1-2) (2015) 56–71.
  • P. Kourosh, M. Delkhosh, Solving the nonlinear Schlömilch’s integral equation arising in ionospheric problems, Afrika Matematika 28 (3) (2017) 459–480.
  • M. A. Al-Jawary, G. H. Radhi, J. Ravnik, Two efficient methods for solving Schlömilch’s integral equation, International Journal of Intelligent Computing and Cybernetics 10 (3) (2017) 287–309.
  • P. J. Ponzo, N. Wax, Existence and stability of periodic solutions of y¨ − µF (y˙) + y = 0, Journal of Mathematical Analysis and Applications 38 (3) (1972) 793–804.
  • A. D. D. Craik, Wave interactions and fluid flows, Cambridge University Press, Cambridge, 1986.
  • J. H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering 178 (3-4) (1999) 257–262.
  • S. J. Liao, An approximate solution technique not depending on small parameters: A special example, International Journal of Non-Linear Mechanics 30 (3) (1995) 371–380.
  • J. H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International Journal of Non-Linear Mechanics 35 (1) (2000) 37–43.
  • J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation 135 (1) (2003) 73–79.
  • J. H. He, Recent development of the homotopy perturbation method, Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center 31 (2008) 205–209.
  • M. A. Noor, Iterative methods for nonlinear equations using homotopy perturbation technique, Applied Mathematics & Information Sciences 4 (2) (2010) 227–235.
  • L. Yuzhen, Numerical methods for integral equations, Doctoral Dissertation Syracuse University (2023) New York.
  • A. Golbabai, B. Keremati, Modified homotopy perturbation method for solving Fredholm integral equations, Chaos, Solitons & Fractals 37 (2008) 1528–1537.
  • J. S. Nadjafi, M. Tamamgar, Modified homotopy perturbation method for solving integral equations, International Journal of Modern Physics B 24 (24) (2010) 4741–4746.
  • M. Sotoodeh, M. A. F. Araghi, A new modified homotopy perturbation method for solving linear second-order Fredholm integro-differential equations, International Journal of Mathematical Modelling & Computations 2 (4) (2012) 299–308.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Methods and Special Functions
Journal Section Research Articles
Authors

Ahmet Altürk 0000-0002-5220-0608

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date November 6, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Altürk, A. (2024). An efficient method for solving Schlömilch-type integral equations. Journal of Amasya University the Institute of Sciences and Technology, 5(2), 72-78. https://doi.org/10.54559/jauist.1580693
AMA Altürk A. An efficient method for solving Schlömilch-type integral equations. J. Amasya Univ. Inst. Sci. Technol. December 2024;5(2):72-78. doi:10.54559/jauist.1580693
Chicago Altürk, Ahmet. “An Efficient Method for Solving Schlömilch-Type Integral Equations”. Journal of Amasya University the Institute of Sciences and Technology 5, no. 2 (December 2024): 72-78. https://doi.org/10.54559/jauist.1580693.
EndNote Altürk A (December 1, 2024) An efficient method for solving Schlömilch-type integral equations. Journal of Amasya University the Institute of Sciences and Technology 5 2 72–78.
IEEE A. Altürk, “An efficient method for solving Schlömilch-type integral equations”, J. Amasya Univ. Inst. Sci. Technol., vol. 5, no. 2, pp. 72–78, 2024, doi: 10.54559/jauist.1580693.
ISNAD Altürk, Ahmet. “An Efficient Method for Solving Schlömilch-Type Integral Equations”. Journal of Amasya University the Institute of Sciences and Technology 5/2 (December 2024), 72-78. https://doi.org/10.54559/jauist.1580693.
JAMA Altürk A. An efficient method for solving Schlömilch-type integral equations. J. Amasya Univ. Inst. Sci. Technol. 2024;5:72–78.
MLA Altürk, Ahmet. “An Efficient Method for Solving Schlömilch-Type Integral Equations”. Journal of Amasya University the Institute of Sciences and Technology, vol. 5, no. 2, 2024, pp. 72-78, doi:10.54559/jauist.1580693.
Vancouver Altürk A. An efficient method for solving Schlömilch-type integral equations. J. Amasya Univ. Inst. Sci. Technol. 2024;5(2):72-8.