Evaluating KIP against SPSS: A Reliable and Valid Statistical Tool for Academic Research
Year 2025,
Volume: 13 Issue: 25, 602 - 627
Süleyman Ulupınar
,
Serhat Özbay
,
Fadime Ulupınar
,
Selim Asan
,
İzzet İnce
,
Deniz Bedir
,
Cebrail Gençoğlu
,
Salih Çabuk
Abstract
This study aims to evaluate the “Simplified Statistical Program (KIP),” a statistical tool designed to simplify analysis and reporting for academic research, by comparing it with the reference software, SPSS (version 27.0). The study assesses KIP’s performance in parametric and non-parametric tests, assumption checks, graphical capabilities, and Word-format output generation using four publicly available datasets selected for their suitability to test a range of statistical analyses. The program demonstrated high accuracy and reliability, with results largely consistent with SPSS across these datasets, showing identical p-values, statistical test values, and effect sizes in both parametric and non-parametric tests, as well as assumption checks. In conclusion, KIP is a reliable and user-friendly tool for academic and professional use, but it has limitations (e.g. lack of multi-platform support).
Ethical Statement
Bilgilendirme
Bu çalışmada insan veya hayvan deneklerinden veri toplanmamıştır. Bu nedenle çalışma, etik kurul onayı gerektiren çalışmalar kapsamında yer almadığından etik kurul onayı alınmamıştır.
References
- Akbulut, Ö. (2022). Bilimsel araştırmalarda istatistiksel anlamlılığın raporlanmasında güncel yaklaşımlar: Hatalar ve doğrular. International Journal of Eastern Mediterranean Agricultural Research, 5(1), 1-19.
- Alpar, R. (2014). Uygulamalı istatistik ve geçerlilik-güvenirlik: SPSS’de çözümleme adımları ile birlikte (3. baskı). Detay Yayıncılık.
- Bademci, V. (2022). Correcting fallacies about validity as the most fundamental concept in educational and psychological measurement. International e-Journal of Educational Studies, 6 (12), 148-154. https://doi.org/10.31458/iejes.1140672
- Bressert, E. (2012). Scipy and numpy: An overview for developers. O’Reilly Media.
- Fagerland, M. W. (2012). t-tests, non-parametric tests, and large studies—a paradox of statistical practice? BMC Medical Research Methodology, 12, 1-7. https://doi.org/10.1186/1471-2288-12-78
- Gotelli, N. J., & Ulrich, W. (2012). Statistical challenges in null model analysis. Oikos, 121(2), 171-180. https://doi.org/10.1111/j.1600-0706.2011.19731.x
- Hill, C., Du, L., Johnson, M., & McCullough, B. (2024). Comparing programming languages for data analytics: Accuracy of estimation in Python and R. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, e1531. https://doi.org/10.1002/widm.1531
- Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3-13. https://doi.org/10.1249/MSS.0b013e31818cb278
- Jain, P., & Sengar, S. (2024). Unraveling the role of IBM SPSS: A comprehensive examination of usage patterns, perceived benefits, and challenges in research practice. Educational Administration: Theory and Practice, 30(5), 9523-9530. https://doi.org/10.53555/kuey.v30i5.4609
- Lino Calle, V. A., Carvajal Rivadeneira, D. D., Sornoza Parrales, D., Vergara Ibarra, J. L., & Intriago Delgado, Y. M. (2024). Jamovi, the technological tool for analyzing and interpreting data in civil engineering projects. Revista Innovaciones Educativas, 26(41), 151-165. http://ddoi.org/10.22458/ie.v26i41.5145
- Loerts, H., Lowie, W., & Seton, B. (2020). Essential statistics for applied linguistics: Using R or JASP. Bloomsbury Publishing.
- Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, J., … Epskamp, S. (2019). JASP: Graphical statistical software for common statistical designs. Journal of Statistical Software, 88(1), 1-17. https://doi.org/10.18637/jss.v088.i02
- Özbay, S., Ulupınar, S., Gençoğlu, C., Ouergui, I., Öget, F., Yılmaz, H. H., … Uçan, İ. (2024). Effects of Ramadan intermittent fasting on performance, physiological responses, and bioenergetic pathway contributions during repeated sprint exercise. Frontiers in Nutrition, 11, 1322128. https://doi.org/10.3389/fnut.2024.1322128
- Ramachandran, K. M., & Tsokos, C. P. (2020). Mathematical statistics with applications in R. Academic Press.
- Shepherd, M. A., & Richardson, E. J. (2024). Opting for open‐source? A review of free statistical software programs. Teaching Statistics, 46(1), 53-63. https://doi.org/10.1111/test.12360
- Stehlik-Barry, K., & Babinec, A. J. (2017). Data analysis with IBM SPSS statistics. Packt Publishing.
- Şahin, M., & Aybek, E. (2019). Jamovi: An easy to use statistical software for the social scientists. International Journal of Assessment Tools in Education, 6(4), 670-692. https://doi.org/10.21449/ijate.661803
- Ulupınar, S. (2022). Atletik performans ölçümlerinde test–tekrar test güvenirliği analizleri. İstanbul Gelişim Üniversitesi Sosyal Bilimler Dergisi, 9(2), 738-747. https://doi.org/10.17336/igusbd.809612
- Ulupınar, S., & İnce, İ. (2021). Spor bilimlerinde etki büyüklüğü ve alternatif istatistik yaklaşımları. Spormetre Beden Eğitimi ve Spor Bilimleri Dergisi, 19(1), 1-17. https://doi.org/10.33689/spormetre.794015
- Vallat, R. (2018). Pingouin: Statistics in Python. Journal of Open Source Software, 3(31), 1026. https://doi.org/10.21105/joss.01026
- Verma, J. (2016). Sports research with analytical solution using SPSS. John Wiley & Sons.
- Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., … & Bright, J. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261-272. https://doi.org/10.1038/s41592-019-0686-2
KIP ve SPSS Karşılaştırması: Akademik Araştırmalar için Güvenilir ve Geçerli Bir İstatistik Yazılımı
Year 2025,
Volume: 13 Issue: 25, 602 - 627
Süleyman Ulupınar
,
Serhat Özbay
,
Fadime Ulupınar
,
Selim Asan
,
İzzet İnce
,
Deniz Bedir
,
Cebrail Gençoğlu
,
Salih Çabuk
Abstract
Bu çalışma, akademik araştırmalar için analiz ve raporlama süreçlerini kolaylaştırmak amacıyla geliştirilen “Kolaylaştırılmış İstatistik Programı (KİP)”in, referans yazılım SPSS (sürüm 27.0) ile karşılaştırmalı olarak değerlendirilmesini amaçlamaktadır. Çalışma, KİP’in parametrik ve non-parametrik test performansını, varsayım kontrollerindeki başarısını, grafik oluşturma yeteneklerini ve Word formatında çıktı üretim kapasitesini, analiz çeşitliliğini desteklemek amacıyla seçilen dört açık kaynaklı veri seti kullanılarak incelemektedir. Bulgular, KİP’in bu veri setlerinde SPSS ile büyük ölçüde tutarlı olduğunu, parametrik ve non-parametrik testlerde p değerleri, istatistiksel test değerleri ve etki büyüklüklerinin eşleştiğini, varsayım kontrollerinde ise tam uyum sağladığını göstermiştir. Sonuç olarak, KİP, akademik ve profesyonel kullanım için güvenilir ve kullanıcı dostu bir araç olarak öne çıkmakla birlikte, çoklu platform desteği eksikliği gibi sınırlamaları bulunmaktadır.
Ethical Statement
Bilgilendirme
Bu çalışmada insan veya hayvan deneklerinden veri toplanmamıştır. Bu nedenle çalışma, etik kurul onayı gerektiren çalışmalar kapsamında yer almadığından etik kurul onayı alınmamıştır.
References
- Akbulut, Ö. (2022). Bilimsel araştırmalarda istatistiksel anlamlılığın raporlanmasında güncel yaklaşımlar: Hatalar ve doğrular. International Journal of Eastern Mediterranean Agricultural Research, 5(1), 1-19.
- Alpar, R. (2014). Uygulamalı istatistik ve geçerlilik-güvenirlik: SPSS’de çözümleme adımları ile birlikte (3. baskı). Detay Yayıncılık.
- Bademci, V. (2022). Correcting fallacies about validity as the most fundamental concept in educational and psychological measurement. International e-Journal of Educational Studies, 6 (12), 148-154. https://doi.org/10.31458/iejes.1140672
- Bressert, E. (2012). Scipy and numpy: An overview for developers. O’Reilly Media.
- Fagerland, M. W. (2012). t-tests, non-parametric tests, and large studies—a paradox of statistical practice? BMC Medical Research Methodology, 12, 1-7. https://doi.org/10.1186/1471-2288-12-78
- Gotelli, N. J., & Ulrich, W. (2012). Statistical challenges in null model analysis. Oikos, 121(2), 171-180. https://doi.org/10.1111/j.1600-0706.2011.19731.x
- Hill, C., Du, L., Johnson, M., & McCullough, B. (2024). Comparing programming languages for data analytics: Accuracy of estimation in Python and R. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, e1531. https://doi.org/10.1002/widm.1531
- Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3-13. https://doi.org/10.1249/MSS.0b013e31818cb278
- Jain, P., & Sengar, S. (2024). Unraveling the role of IBM SPSS: A comprehensive examination of usage patterns, perceived benefits, and challenges in research practice. Educational Administration: Theory and Practice, 30(5), 9523-9530. https://doi.org/10.53555/kuey.v30i5.4609
- Lino Calle, V. A., Carvajal Rivadeneira, D. D., Sornoza Parrales, D., Vergara Ibarra, J. L., & Intriago Delgado, Y. M. (2024). Jamovi, the technological tool for analyzing and interpreting data in civil engineering projects. Revista Innovaciones Educativas, 26(41), 151-165. http://ddoi.org/10.22458/ie.v26i41.5145
- Loerts, H., Lowie, W., & Seton, B. (2020). Essential statistics for applied linguistics: Using R or JASP. Bloomsbury Publishing.
- Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, J., … Epskamp, S. (2019). JASP: Graphical statistical software for common statistical designs. Journal of Statistical Software, 88(1), 1-17. https://doi.org/10.18637/jss.v088.i02
- Özbay, S., Ulupınar, S., Gençoğlu, C., Ouergui, I., Öget, F., Yılmaz, H. H., … Uçan, İ. (2024). Effects of Ramadan intermittent fasting on performance, physiological responses, and bioenergetic pathway contributions during repeated sprint exercise. Frontiers in Nutrition, 11, 1322128. https://doi.org/10.3389/fnut.2024.1322128
- Ramachandran, K. M., & Tsokos, C. P. (2020). Mathematical statistics with applications in R. Academic Press.
- Shepherd, M. A., & Richardson, E. J. (2024). Opting for open‐source? A review of free statistical software programs. Teaching Statistics, 46(1), 53-63. https://doi.org/10.1111/test.12360
- Stehlik-Barry, K., & Babinec, A. J. (2017). Data analysis with IBM SPSS statistics. Packt Publishing.
- Şahin, M., & Aybek, E. (2019). Jamovi: An easy to use statistical software for the social scientists. International Journal of Assessment Tools in Education, 6(4), 670-692. https://doi.org/10.21449/ijate.661803
- Ulupınar, S. (2022). Atletik performans ölçümlerinde test–tekrar test güvenirliği analizleri. İstanbul Gelişim Üniversitesi Sosyal Bilimler Dergisi, 9(2), 738-747. https://doi.org/10.17336/igusbd.809612
- Ulupınar, S., & İnce, İ. (2021). Spor bilimlerinde etki büyüklüğü ve alternatif istatistik yaklaşımları. Spormetre Beden Eğitimi ve Spor Bilimleri Dergisi, 19(1), 1-17. https://doi.org/10.33689/spormetre.794015
- Vallat, R. (2018). Pingouin: Statistics in Python. Journal of Open Source Software, 3(31), 1026. https://doi.org/10.21105/joss.01026
- Verma, J. (2016). Sports research with analytical solution using SPSS. John Wiley & Sons.
- Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., … & Bright, J. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261-272. https://doi.org/10.1038/s41592-019-0686-2