Research Article
BibTex RIS Cite

Evaluation of the Effect of Pelvic Types on Trans-Sacral Screw Corridor Diameter (Retrospective Analysis Using Computerized Tomography Data)

Year 2023, , 836 - 844, 30.09.2023
https://doi.org/10.16899/jcm.1345680

Abstract

Aims: The aim of this study was to investigate the effect of pelvis type on the trans-sacral(TS) screw corridor diameter.
Methods: Pelvis computed tomography (CT) scans between 2017 and 2020 were retrospectively reviewed. Age, gender, height, weight and body mass index (BMI) of the patients were determined during the CT examination. Pelvic CT scans were examined using the imaging system's multi-plane reconstruction (MPR) mode, and the TS screw corridor was measured for both the upper and second sacral segments. In addition, pelvic incidence (PI), sacral tilt (SS), and pelvic tilt (PT) values were measured. Pelvis typing was performed using the large transverse diameter, anteroposterior diameter, interspinous, intertuberocytosis, transverse outlet diameter, sagittal mid-pelvic diameter, and sagittal outlet values.
Results: 81(38%) male and 132(62%) female patients were included in the study. Gynecoid pelvis type was more common in females and android pelvis in males (p < 0.001). The largest diameters in the TS screw corridor at the S1 level belonged to the anthropoid pelvis type. However, in the TS corridor at the S2 level, there was a significant difference between the pelvis-type groups in the mean values of AP and CC (p < 0.001). The effect of gender difference on the TS screw corridor width at the S1 and S2 levels was significant. An adequate corridor width for the TS screw corridor was detected in 50.8% of females and 67.9% of males at the S1 level, while in 21.2% of females and 70.4% of males at the S2 level.
Conclusions: There is a significant difference in the dimensions of the trans-sacral screw corridor according to the pelvis type and gender, with the largest diameter observed in the anthropoid pelvis type and males. In critical situations, especially in males and individuals with android-anthropoid pelvis, the trans-sacral screw option should be considered primarily not only for the S1 trans-sacral corridor but also for the S2 trans-sacral corridor in pelvic posterior ring injuries

References

  • 1. Melhem E, Riouallon G, Habboubi K, Gabbas M, Jouffroy P. Epidemiology of pelvic and acetabular fractures in France. Orthop Traumatol Surg Res. 2020;106(5):831-9.
  • 2. Nork SE, Jones CB, Harding SP, Mirza SK, Routt Jr MC. Percutaneous stabilization of U-shaped sacral fractures using iliosacral screws: technique and early results. J Orthop Trauma. 2001;15(4):238-46.
  • 3. Kannus P, Parkkari J, Niemi S, Sievänen H. Low-trauma pelvic fractures in elderly Finns in 1970–2013. Calcif Tissue Int. 2015;97:577-80.
  • 4. Sahito B, Kumar J, Rasheed N, Katto MS. Anterior Pelvic Plate Osteosynthesis And Percutaneous Sacroiliac Joint Screw Fixation In Open-Book Pelvis Fracture. Journal of Peoples University of Medical & Health Sciences Nawabshah(JPUMHS). 2021;11(2):70-3.
  • 5. Gardner MJ, Routt Jr MC. Transiliac–transsacral screws for posterior pelvic stabilization. J Orthop Trauma. 2011;25(6):378-84.
  • 6. Routt Jr MC, Simonian PT. Closed reduction and percutaneous skeletal fixation of sacral fractures. Clin Orthop Relat Res (1976-2007). 1996;329:121-8
  • 7. Mears SC, Sutter EG, Wall SJ, Rose DM, Belkoff SM. Biomechanical comparison of three methods of sacral fracture fixation in osteoporotic bone. Spine (Phila Pa 1976). 2010;35(10):E392-E5.
  • 8. Chip Jr MC, Simonian PT, Agnew SG, Mann FA. Radiographic recognition of the sacral alar slope for optimal placement of iliosacral screws: a cadaveric and clinical study. J Orthop Trauma. 1996;10(3):171-7.
  • 9. Wagner D, Kamer L, Rommens PM, Sawaguchi T, Richards RG, Noser H. 3D statistical modeling techniques to investigate the anatomy of the sacrum, its bone mass distribution, and the trans‐sacral corridors. J Orthop Res. 2014;32(11):1543-8.
  • 10. Caldwell WE, Moloy HC. Anatomical variations in the female pelvis and their effect in labor with a suggested classification. Am J Obstet Gynecol. 1933;26(4):479-505.
  • 11. Iga T. Iliosacral screw corridors in Japanese subjects: a study using reconstruction CT scans. OTA International. 2021;4(3).
  • 12. Wagner D, Kamer L, Sawaguchi T, Richards RG, Noser H, Hofmann A, et al. Morphometry of the sacrum and its implication on trans-sacral corridors using a computed tomography data-based three-dimensional statistical model. The Spine Journal. 2017;17(8):1141-7.
  • 13. Lee JJ, Rosenbaum SL, Martusiewicz A, Holcombe SA, Wang SC, Goulet JA. Transsacral screw safe zone size by sacral segmentation variations. J Orthop Res. 2015;33(2):277-82.
  • 14. Jäckle K, Paulisch M, Blüchel T, Meier MP, Seitz MT, Acharya MR, et al. Analysis of trans‐sacral corridors in stabilization of fractures of the pelvic ring. J Orthop Res. 2022;40(5):1194-202.
  • 15. Leong A. Sexual dimorphism of the pelvic architecture: a struggling response to destructive and parsimonious forces by natural & mate selection. McGill Journal of Medicine: MJM. 2006;9(1):61.
  • 16. Klales AR. Sex estimation using pelvis morphology. Sex estimation of the human skeleton: Elsevier; 2020. p. 75-93.
  • 17. Christensen A, Passalacqua N, Bartelink E. Current methods in forensic anthropology. United Kingdom: Elsevier; 2014.
  • 18. Gras F, Gottschling H, Schröder M, Marintschev I, Hofmann GO, Burgkart R. Transsacral osseous corridor anatomy is more amenable to screw insertion in males: a biomorphometric analysis of 280 pelves. Clin Orthop Relat Res. 2016;474:2304-11.
  • 19. König M, Sundaram R, Saville P, Jehan S, Boszczyk BM. Anatomical considerations for percutaneous trans ilio-sacroiliac S1 and S2 screw placement. Eur Spine J. 2016;25:1800-5.
  • 20. Balling H. Gender-associated differences in sacral morphology do not affect feasibility rates of transsacral screw insertion. Radioanatomic investigation based on pelvic cross-sectional imaging of 200 individuals. Spine (Phila Pa 1976). 2020;45(7):421-30.
  • 21. Kaiser SP, Gardner MJ, Liu J, Routt Jr MC, Morshed S. Anatomic determinants of sacral dysmorphism and implications for safe iliosacral screw placement. JBJS. 2014;96(14):e120.
  • 22. Mendel T, Radetzki F, Wohlrab D, Stock K, Hofmann GO, Noser H. CT-based 3-D visualisation of secure bone corridors and optimal trajectories for sacroiliac screws. Injury. 2013;44(7):957-63.
  • 23. Nastoulis E, Karakasi M-V, Pavlidis P, Thomaidis V, Fiska A. Anatomy and clinical significance of sacral variations: a systematic review. Folia Morphol (Praha). 2019;78(4):651-67.
  • 24. Day C, Prayson M, Shuler T, Towers J, Gruen G. Transsacral versus modified pelvic landmarks for percutaneous iliosacral screw placement--a computed tomographic analysis and cadaveric study. Am J Orthop (Belle Mead, NJ). 2000;29(9 Suppl):16-21.
  • 25. Schultz BJ, Mayer RM, Phelps KD, Saiz AM, Kellam PJ, Eastman JG, et al. Assessment of sacral osseous fixation pathways for same-level dual transiliac–transsacral screw insertion. Arch Orthop Trauma Surg. 2023:1-8.
  • 26. Gardner MJ, Morshed S, Nork SE, Ricci WM, Routt Jr MLC. Quantification of the upper and second sacral segment safe zones in normal and dysmorphic sacra. J Orthop Trauma. 2010;24(10):622-9.
  • 27. Wagner D, Kamer L, Sawaguchi T, Geoff Richards R, Noser H, Uesugi M, et al. Critical dimensions of trans‐sacral corridors assessed by 3D CT models: relevance for implant positioning in fractures of the sacrum. J Orthop Res. 2017;35(11):2577-84.
  • 28. Fischer B, Mitteroecker P. Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma. Proceedings of the National Academy of Sciences. 2015;112(18):5655-60.
  • 29. Abola MV, Teplensky JR, Cooperman DR, Bauer JM, Liu RW. Pelvic incidence is associated with sacral curvature, sacroiliac joint angulation, and sacral ala width. Spine (Phila Pa 1976). 2018;43(22):1529-35.
  • 30. Boulay C, Tardieu C, Hecquet J, Benaim C, Mitulescu A, Marty C, et al. Anatomical reliability of two fundamental radiological and clinical pelvic parameters: incidence and thickness. Eur J Orthop Surg Traumatol. 2005;15(3).
  • 31. Mehta VA, Amin A, Omeis I, Gokaslan ZL, Gottfried ON. Implications of spinopelvic alignment for the spine surgeon. Neurosurgery. 2012;70(3):707-21.
  • 32. Le Huec J, Demezon H, Aunoble S. Sagittal parameters of global cervical balance using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers. Eur Spine J. 2015;24:63-71.
  • 33. Morshed S, Choo K, Kandemir U, Kaiser SP. Internal fixation of posterior pelvic ring injuries using iliosacral screws in the dysmorphic upper sacrum. JBJS essential surgical techniques. 2015;5(1).
  • 34. Conflitti JM, Graves ML, Routt Jr MC. Radiographic quantification and analysis of dysmorphic upper sacral osseous anatomy and associated iliosacral screw insertions. J Orthop Trauma. 2010;24(10):630-6.

PELVİS TİPLERİNİN TRANS-SAKRAL VİDA KORİDOR ÇAPINA ETKİSİNİN DEĞERLENDİRİLMESİ (BİLGİSAYARLI TOMOGRAFİ VERİLERİ KULLANILARAK YAPILAN RETROSPEKTİF ANALİZ.)

Year 2023, , 836 - 844, 30.09.2023
https://doi.org/10.16899/jcm.1345680

Abstract

Amaç: Bu çalışmanın amacı, pelvis tipinin trans-sakral (TS) vida koridor çapı üzerindeki etkisini araştırmaktır.
Yöntemler: 2017 ile 2020 yılları arasındaki pelvis bilgisayarlı tomografi (BT) taramaları retrospektif olarak gözden geçirildi. Hastaların yaş, cinsiyet, boy, kilo ve vücut kitle indeksi (VKİ) CT taraması sırasında belirlendi. Pelvik BT taramaları, görüntüleme sisteminin çok düzlemli rekonstrüksiyon (MPR) modu kullanılarak incelendi ve üst ve ikinci sakral segmentler için TS vida koridoru ölçüldü. Ayrıca, pelvik insidans (PI), sakral eğim (SS) ve pelvik eğim (PT) değerleri ölçüldü. Pelvis tiplemesi büyük transvers çap, anteroposterior çap, interspinöz, intertüberokitoz, transvers çıkış çapı, sagittal orta pelvik çap ve sagittal çıkış değerleri kullanılarak yapıldı.
Bulgular: Çalışmaya 81 (%38) erkek ve 132 (%62) kadın hasta dahil edildi. Ginekoid pelvis tipi kadınlarda daha yaygındı, android pelvis ise erkeklerde görüldü (p < 0.001). TS vida koridorundaki en büyük çaplar, S1 seviyesinde antropoid pelvis tipine aitti. Ancak, S2 seviyesinde TS koridorunda, pelvis tipi grupları arasında AP ve CC ortalama değerlerinde anlamlı bir fark vardı (p < 0.001). Cinsiyet farkının S1 ve S2 seviyelerindeki TS vida koridor genişliği üzerindeki etkisi anlamlıydı. TS vida koridoru için uygun bir koridor genişliği, S1 seviyesinde kadınların %50.8'inde ve erkeklerin %67.9'unda, S2 seviyesinde ise kadınların %21.2'sinde ve erkeklerin %70.4'ünde tespit edildi.
Sonuçlar: Pelvis tipine ve cinsiyete göre trans-sakral vida koridorunun boyutlarında önemli bir fark bulunmaktadır; en büyük çap antropoid pelvis tipinde ve erkeklerde gözlemlenmektedir. Özellikle erkeklerde ve android-antropoid pelvis yapısına sahip bireylerde, kritik durumlarda trans-sakral vida seçeneği, pelvis posterior halka yaralanmaları için yalnızca S1 trans-sakral koridoru değil, aynı zamanda S2 trans-sakral koridoru için de öncelikli olarak değerlendirilmelidir.

References

  • 1. Melhem E, Riouallon G, Habboubi K, Gabbas M, Jouffroy P. Epidemiology of pelvic and acetabular fractures in France. Orthop Traumatol Surg Res. 2020;106(5):831-9.
  • 2. Nork SE, Jones CB, Harding SP, Mirza SK, Routt Jr MC. Percutaneous stabilization of U-shaped sacral fractures using iliosacral screws: technique and early results. J Orthop Trauma. 2001;15(4):238-46.
  • 3. Kannus P, Parkkari J, Niemi S, Sievänen H. Low-trauma pelvic fractures in elderly Finns in 1970–2013. Calcif Tissue Int. 2015;97:577-80.
  • 4. Sahito B, Kumar J, Rasheed N, Katto MS. Anterior Pelvic Plate Osteosynthesis And Percutaneous Sacroiliac Joint Screw Fixation In Open-Book Pelvis Fracture. Journal of Peoples University of Medical & Health Sciences Nawabshah(JPUMHS). 2021;11(2):70-3.
  • 5. Gardner MJ, Routt Jr MC. Transiliac–transsacral screws for posterior pelvic stabilization. J Orthop Trauma. 2011;25(6):378-84.
  • 6. Routt Jr MC, Simonian PT. Closed reduction and percutaneous skeletal fixation of sacral fractures. Clin Orthop Relat Res (1976-2007). 1996;329:121-8
  • 7. Mears SC, Sutter EG, Wall SJ, Rose DM, Belkoff SM. Biomechanical comparison of three methods of sacral fracture fixation in osteoporotic bone. Spine (Phila Pa 1976). 2010;35(10):E392-E5.
  • 8. Chip Jr MC, Simonian PT, Agnew SG, Mann FA. Radiographic recognition of the sacral alar slope for optimal placement of iliosacral screws: a cadaveric and clinical study. J Orthop Trauma. 1996;10(3):171-7.
  • 9. Wagner D, Kamer L, Rommens PM, Sawaguchi T, Richards RG, Noser H. 3D statistical modeling techniques to investigate the anatomy of the sacrum, its bone mass distribution, and the trans‐sacral corridors. J Orthop Res. 2014;32(11):1543-8.
  • 10. Caldwell WE, Moloy HC. Anatomical variations in the female pelvis and their effect in labor with a suggested classification. Am J Obstet Gynecol. 1933;26(4):479-505.
  • 11. Iga T. Iliosacral screw corridors in Japanese subjects: a study using reconstruction CT scans. OTA International. 2021;4(3).
  • 12. Wagner D, Kamer L, Sawaguchi T, Richards RG, Noser H, Hofmann A, et al. Morphometry of the sacrum and its implication on trans-sacral corridors using a computed tomography data-based three-dimensional statistical model. The Spine Journal. 2017;17(8):1141-7.
  • 13. Lee JJ, Rosenbaum SL, Martusiewicz A, Holcombe SA, Wang SC, Goulet JA. Transsacral screw safe zone size by sacral segmentation variations. J Orthop Res. 2015;33(2):277-82.
  • 14. Jäckle K, Paulisch M, Blüchel T, Meier MP, Seitz MT, Acharya MR, et al. Analysis of trans‐sacral corridors in stabilization of fractures of the pelvic ring. J Orthop Res. 2022;40(5):1194-202.
  • 15. Leong A. Sexual dimorphism of the pelvic architecture: a struggling response to destructive and parsimonious forces by natural & mate selection. McGill Journal of Medicine: MJM. 2006;9(1):61.
  • 16. Klales AR. Sex estimation using pelvis morphology. Sex estimation of the human skeleton: Elsevier; 2020. p. 75-93.
  • 17. Christensen A, Passalacqua N, Bartelink E. Current methods in forensic anthropology. United Kingdom: Elsevier; 2014.
  • 18. Gras F, Gottschling H, Schröder M, Marintschev I, Hofmann GO, Burgkart R. Transsacral osseous corridor anatomy is more amenable to screw insertion in males: a biomorphometric analysis of 280 pelves. Clin Orthop Relat Res. 2016;474:2304-11.
  • 19. König M, Sundaram R, Saville P, Jehan S, Boszczyk BM. Anatomical considerations for percutaneous trans ilio-sacroiliac S1 and S2 screw placement. Eur Spine J. 2016;25:1800-5.
  • 20. Balling H. Gender-associated differences in sacral morphology do not affect feasibility rates of transsacral screw insertion. Radioanatomic investigation based on pelvic cross-sectional imaging of 200 individuals. Spine (Phila Pa 1976). 2020;45(7):421-30.
  • 21. Kaiser SP, Gardner MJ, Liu J, Routt Jr MC, Morshed S. Anatomic determinants of sacral dysmorphism and implications for safe iliosacral screw placement. JBJS. 2014;96(14):e120.
  • 22. Mendel T, Radetzki F, Wohlrab D, Stock K, Hofmann GO, Noser H. CT-based 3-D visualisation of secure bone corridors and optimal trajectories for sacroiliac screws. Injury. 2013;44(7):957-63.
  • 23. Nastoulis E, Karakasi M-V, Pavlidis P, Thomaidis V, Fiska A. Anatomy and clinical significance of sacral variations: a systematic review. Folia Morphol (Praha). 2019;78(4):651-67.
  • 24. Day C, Prayson M, Shuler T, Towers J, Gruen G. Transsacral versus modified pelvic landmarks for percutaneous iliosacral screw placement--a computed tomographic analysis and cadaveric study. Am J Orthop (Belle Mead, NJ). 2000;29(9 Suppl):16-21.
  • 25. Schultz BJ, Mayer RM, Phelps KD, Saiz AM, Kellam PJ, Eastman JG, et al. Assessment of sacral osseous fixation pathways for same-level dual transiliac–transsacral screw insertion. Arch Orthop Trauma Surg. 2023:1-8.
  • 26. Gardner MJ, Morshed S, Nork SE, Ricci WM, Routt Jr MLC. Quantification of the upper and second sacral segment safe zones in normal and dysmorphic sacra. J Orthop Trauma. 2010;24(10):622-9.
  • 27. Wagner D, Kamer L, Sawaguchi T, Geoff Richards R, Noser H, Uesugi M, et al. Critical dimensions of trans‐sacral corridors assessed by 3D CT models: relevance for implant positioning in fractures of the sacrum. J Orthop Res. 2017;35(11):2577-84.
  • 28. Fischer B, Mitteroecker P. Covariation between human pelvis shape, stature, and head size alleviates the obstetric dilemma. Proceedings of the National Academy of Sciences. 2015;112(18):5655-60.
  • 29. Abola MV, Teplensky JR, Cooperman DR, Bauer JM, Liu RW. Pelvic incidence is associated with sacral curvature, sacroiliac joint angulation, and sacral ala width. Spine (Phila Pa 1976). 2018;43(22):1529-35.
  • 30. Boulay C, Tardieu C, Hecquet J, Benaim C, Mitulescu A, Marty C, et al. Anatomical reliability of two fundamental radiological and clinical pelvic parameters: incidence and thickness. Eur J Orthop Surg Traumatol. 2005;15(3).
  • 31. Mehta VA, Amin A, Omeis I, Gokaslan ZL, Gottfried ON. Implications of spinopelvic alignment for the spine surgeon. Neurosurgery. 2012;70(3):707-21.
  • 32. Le Huec J, Demezon H, Aunoble S. Sagittal parameters of global cervical balance using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers. Eur Spine J. 2015;24:63-71.
  • 33. Morshed S, Choo K, Kandemir U, Kaiser SP. Internal fixation of posterior pelvic ring injuries using iliosacral screws in the dysmorphic upper sacrum. JBJS essential surgical techniques. 2015;5(1).
  • 34. Conflitti JM, Graves ML, Routt Jr MC. Radiographic quantification and analysis of dysmorphic upper sacral osseous anatomy and associated iliosacral screw insertions. J Orthop Trauma. 2010;24(10):630-6.
There are 34 citations in total.

Details

Primary Language English
Subjects Orthopaedics
Journal Section Original Research
Authors

Yavuz Selim Karatekin 0000-0002-2460-4648

Orhan Balta 0000-0002-4398-827X

Publication Date September 30, 2023
Acceptance Date September 20, 2023
Published in Issue Year 2023

Cite

AMA Karatekin YS, Balta O. Evaluation of the Effect of Pelvic Types on Trans-Sacral Screw Corridor Diameter (Retrospective Analysis Using Computerized Tomography Data). J Contemp Med. September 2023;13(5):836-844. doi:10.16899/jcm.1345680