Research Article
BibTex RIS Cite

Einstein'ın Birleşik Alan Teorisi Doğrultusunda, Lateralitenin Belirlenmesinde Serebral Hemisferler Tarafından Oluşturulan Elektromanyetik Alanın Yoğunluğunun Rolü Üzerine Nörofiziksel Bir Hipotez

Year 2024, , 174 - 179, 31.07.2024
https://doi.org/10.16899/jcm.1467668

Abstract

Öz
Amaç: Öncelikle anatomik ve fonksiyonel asimetrilere odaklanan geleneksel serebral lateralite modelleri, altta yatan fiziksel dinamikleri açıklamakta yetersiz kalmaktadır. Bu çalışma, serebral hemisferler tarafından üretilen elektromanyetik alanın yoğunluğunun lateralitenin belirlenmesinde çok önemli bir rol oynadığını varsayarak yeni bir bakış açısına öncülük etmektedir. Einstein'ın birleşik alan teorisinden esinlenerek, bu hipotezi fizik prensiplerini nörofizyoloji ile birleştiren disiplinler arası bir yaklaşımla araştırıyoruz.

Gereç ve Yöntem: Araştırmamızda, sağ elini kullanan, sol elini kullanan ve iki elini de kullanabilen olmak üzere üç grup erkek Wistar albino sıçanı içeren yenilikçi bir deneysel tasarım kullanılmıştır. Serebral hemisferlerin elektromanyetik alan yoğunluğunu ölçmek için elektroensefalografi (EEG) kullandık ve verileri geleneksel sinirbilimsel yöntemleri alan teorisinden uyarlanan kavramlarla birleştiren bir mercek aracılığıyla analiz ettik.

Bulgular: Bulgular, baskın hemisferdeki elektromanyetik alan yoğunluğu ile el kullanımı arasında anlamlı bir korelasyon olduğunu ve baskın hemisferlerin daha yüksek alan yoğunluğu sergilediğini ortaya koymaktadır. Özellikle, iki elini de kullanabilen sıçanlar, hemisferler arasındaki alan yoğunluğunda önemli bir fark sergilememiş ve elektromanyetik alanların hemisferik baskınlık üzerindeki potansiyel etkisinin altını çizmiştir.

Sonuç: Bu çalışmanın sonuçları serebral fonksiyonların elektromanyetik olaylardan nasıl etkilenebileceğine dair radikal bir yeniden düşünme önermektedir. Einstein'ın birleşik alan teorisinin serebral lateralite çalışmasına entegrasyonu, araştırmalar için yeni yollar açmaktadır. Bulgularımız, beyin işlevselliğinin daha geniş, daha entegre bir şekilde anlaşılmasını savunmakta ve bu yeni gelişen alanda daha fazla disiplinlerarası araştırmaya duyulan ihtiyacı vurgulamaktadır.

References

  • 1. Hosseini E. Brain-to-brain communication: the possible role of brain electromagnetic fields (As a Potential Hypothesis). Heliyon. 2021;7(3):e06363.
  • 2. Light GA, Williams LE, Minow F, Sprock J, Rissling A, Sharp R, et al. Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Curr Protoc Neurosci. 2010;Chapter 6:Unit 6.25.1-4.
  • 3. Sauer T. Einstein’s Unified Field Theory Program. In: Janssen M, Lehner C, editors. The Cambridge Companion to Einstein. Cambridge Companions to Philosophy. Cambridge: Cambridge University Press; 2014. p. 281-305.
  • 4. Feynman R. The Feynman Lectures on Physics, Volume II: Addison Wesley Longman; 1970.
  • 5. Griffiths DJ. Introduction to Electrodynamics. 3rd ed. New Jersey: Prentice Hall; 1999.
  • 6. McMullin E. The Origins of the Field Concept in Physics. Phys. Perspect. 2002;4:13-39.
  • 7. Einstein A, Straus EG. A Generalization of the Relativistic Theory of Gravitation, II. Ann. Math. 1946;47(4):731-41.
  • 8. Peruzzo D, Arrigoni F, Triulzi F, Parazzini C, Castellani U. Detection of corpus callosum malformations in pediatric population using the discriminative direction in multiple kernel learning. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):300-7.
  • 9. Berretz G, Packheiser J, Wolf OT, Ocklenburg S. Improved interhemispheric connectivity after stress during lexical decision making. Behav Brain Res. 2022;418:113648.
  • 10. Fabri M, Polonara G. Functional topography of human corpus callosum: an FMRI mapping study. Neural plast. 2013;2013:251308.
  • 11. Caiazzo G, Corbo D, Trojsi F, Piccirillo G, Cirillo M, Monsurrò MR, et al. Distributed corpus callosum involvement in amyotrophic lateral sclerosis: a deterministic tractography study using q-ball imaging. J Neurol. 2014;261(1):27-36.
  • 12. Luders E, Cherbuin N, Thompson PM, Gutman B, Anstey KJ, Sachdev P, Toga AW. When more is less: Associations between corpus callosum size and handedness lateralization. NeuroImage. 2010;52(1):43-9.
  • 13. Josse G, Seghier ML, Kherif F, Price CJ. Explaining function with anatomy: Language lateralization and corpus callosum size. J. Neurosci. 2008;28(52):14132-9.
  • 14. Anstey KJ, Mack HA, Christensen H, Li SC, Reglade-Meslin C, Maller J, et al. Corpus callosum size, reaction time speed and variability in mild cognitive disorders and in a normative sample. Neuropsychologia. 2007;45(8):1911-20.
  • 15. Papadopoulou A-K, Samsouris C, Vlachos F, Badcock NA, Phylactou P, Papadatou-Pastou M. Exploring cerebral laterality of writing and the relationship to handedness: a functional transcranial Doppler ultrasound investigation. Laterality. 2024;29(1):117-50.
  • 16. Rogers LJ. Brain Lateralization and Cognitive Capacity. Animals (Basel). 2021;11(7).
  • 17. Stieger B, Palme R, Kaiser S, Sachser N, Richter SH. When left is right: The effects of paw preference training on behaviour in mice. Behav. Brain Res. 2022;430:113929.
  • 18. Ecevitoglu A, Soyman E, Canbeyli R, Unal G. Paw preference is associated with behavioural despair and spatial reference memory in male rats. Behav. Processes. 2020;180:104254.
  • 19. Wells DL. Paw preference as a tool for assessing emotional functioning and welfare in dogs and cats: A review. Applied Animal Behaviour Science. 2021;236:105148.
  • 20. Lin Y, Liu Q, Song N, Zhang E, Chen M. Food handling shapes the laterality of paw use in the Chinese red panda (Ailurus styani). Behav. Processes. 2022;200:104688.
  • 21. Güven M, Elalmiş DD, Binokay S, Tan U. Population-level right-paw preference in rats assessed by a new computerized food-reaching test. Int J Neurosci. 2003;113(12):1675-89.
  • 22. Elalmis DD, ÖZgÜNen KT, Binokay S, Tan M, ÖZgÜNen T, Tan Ü. DIFFERENTIAL CONTRIBUTIONS OF RIGHT AND LEFT BRAINS TO PAW SKILL IN RIGHT- AND LEFT-PAWED FEMALE RATS. Int. J. Neurosci. 2003;113(8):1023-41.
  • 23. Nachar N. The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution. TQMP. 2008;4(1):13-20.
  • 24. Nguyen N, Hai, An P, Phong Thi Thu H. Shortest Paths along a Sequence of Line Segments in Euclidean Spaces. Journal of Convex Analysis. 2019;26:1089–112.
  • 25. Wilson EB, Lewis GN. The Space-Time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics. Proceedings of the American Academy of Arts and Sciences. 1912;48(11):389-507.
  • 26. Kamath SG, Sreedhar VV. Classical radiation from a relativistic charge accelerated along a brachistochrone. Phys Rev A Gen Phys. 1987;36(5):2478-81.
  • 27. Sun P, Liu Y, Huang X. Exploring the brachistochrone (shortest-time) path in fire spread. Sci Rep. 2022;12(1):13600.
  • 28. Brown JW, HÉCaen H. Lateralization and language representation. Neurology. 1976;26(2):183.
  • 29. Hall JE, Hall ME. Guyton and Hall Textbook of Medical Physiology E-Book. 2020.
  • 30. Haines Duane E, Mihailoff Gregory A. Fundamental Neuroscience for Basic and Clinical Applications. 5 ed2017.
  • 31. Gainotti G. Emotions and the Right Hemisphere: Can New Data Clarify Old Models? Neuroscientist. 2019;25(3):258-70.
  • 32. Kim S-W, Kim M, Baek J, Latchoumane C-F, Gangadharan G, Yoon Y, et al. Hemispherically lateralized rhythmic oscillations in the cingulate-amygdala circuit drive affective empathy in mice. Neuron. 2023;111(3):418-29.e4.
  • 33. Allen HN, Bobnar HJ, Kolber BJ. Left and right hemispheric lateralization of the amygdala in pain. Prog. in Neurobiol. 2021;196:101891.
  • 34. MacNeilage P, Rogers L, Vallortigara G. Origins of the Left & Right Brain. Sci. Am. 2009;301:60-7.
  • 35. Sacco S, Moutard ML, Fagard J. Agenesis of the corpus callosum and the establishment of handedness. Dev Psychobiol. 2006;48(6):472-81.
  • 36. Karolis VR, Corbetta M, Thiebaut de Schotten M. The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nat Commun. 2019;10(1):1417.
  • 37. Ferreira Furtado LM, Bernardes HM, de Souza Félix Nunes FA, Gonçalves CA, Da Costa Val Filho JA, de Miranda AS. The Role of Neuroplasticity in Improving the Decision-Making Quality of Individuals With Agenesis of the Corpus Callosum: A Systematic Review. Cureus. 2022;14(6):e26082.
  • 38. Anstey KJ, Mack HA, Christensen H, Li SC, Reglade-Meslin C, Maller J, et al. Corpus callosum size, reaction time speed and variability in mild cognitive disorders and in a normative sample. Neuropsychologia. 2007;45(8):1911-20.
  • 39. Acer N, Çankaya MN, İşçi Ö, Baş O, Çamurdanoğlu M, Turgut M. Estimation of cerebral surface area using vertical sectioning and magnetic resonance imaging: A stereological study. Brain Res. 2010;1310:29-36.

A Neurophysical Hypothesis on the Role of the Intensity of the Electromagnetic Field Generated by the Cerebral Hemispheres in the Determination of Laterality, in Line with Einstein's Unified Field Theory

Year 2024, , 174 - 179, 31.07.2024
https://doi.org/10.16899/jcm.1467668

Abstract

Abstract
Objective: Traditional models of cerebral laterality, focusing primarily on anatomical and functional asymmetries, fall short of explaining the underlying physical dynamics. This study pioneers a novel perspective by hypothesizing that the intensity of the electromagnetic field generated by the cerebral hemispheres plays a crucial role in determining laterality. Inspired by Einstein's unified field theory, we explore this hypothesis through an interdisciplinary approach that merges principles of physics with neurophysiology.

Material and Methods: Our research employed an innovative experimental design involving three groups of male Wistar albino rats categorized based on handedness: right-handed, left-handed, and ambidextrous. We utilized electroencephalography (EEG) to measure the electromagnetic field intensity of the cerebral hemispheres, analyzing the data through a lens that combines traditional neuroscientific methods with concepts adapted from field theory.

Results: The findings reveal a significant correlation between the intensity of the electromagnetic field in the dominant hemisphere and handedness, with dominant hemispheres displaying higher field intensities. Notably, ambidextrous rats exhibited no significant difference in field intensity between hemispheres, underscoring the potential influence of electromagnetic fields on hemispheric dominance.

Conclusion: This study's implications suggest a radical rethinking of how cerebral functions might be influenced by electromagnetic phenomena. The integration of Einstein's unified field theory into the study of cerebral laterality opens new pathways for research. Our findings advocate for a broader, more integrated understanding of brain functionality, highlighting the need for further interdisciplinary research in this nascent field.

References

  • 1. Hosseini E. Brain-to-brain communication: the possible role of brain electromagnetic fields (As a Potential Hypothesis). Heliyon. 2021;7(3):e06363.
  • 2. Light GA, Williams LE, Minow F, Sprock J, Rissling A, Sharp R, et al. Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Curr Protoc Neurosci. 2010;Chapter 6:Unit 6.25.1-4.
  • 3. Sauer T. Einstein’s Unified Field Theory Program. In: Janssen M, Lehner C, editors. The Cambridge Companion to Einstein. Cambridge Companions to Philosophy. Cambridge: Cambridge University Press; 2014. p. 281-305.
  • 4. Feynman R. The Feynman Lectures on Physics, Volume II: Addison Wesley Longman; 1970.
  • 5. Griffiths DJ. Introduction to Electrodynamics. 3rd ed. New Jersey: Prentice Hall; 1999.
  • 6. McMullin E. The Origins of the Field Concept in Physics. Phys. Perspect. 2002;4:13-39.
  • 7. Einstein A, Straus EG. A Generalization of the Relativistic Theory of Gravitation, II. Ann. Math. 1946;47(4):731-41.
  • 8. Peruzzo D, Arrigoni F, Triulzi F, Parazzini C, Castellani U. Detection of corpus callosum malformations in pediatric population using the discriminative direction in multiple kernel learning. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):300-7.
  • 9. Berretz G, Packheiser J, Wolf OT, Ocklenburg S. Improved interhemispheric connectivity after stress during lexical decision making. Behav Brain Res. 2022;418:113648.
  • 10. Fabri M, Polonara G. Functional topography of human corpus callosum: an FMRI mapping study. Neural plast. 2013;2013:251308.
  • 11. Caiazzo G, Corbo D, Trojsi F, Piccirillo G, Cirillo M, Monsurrò MR, et al. Distributed corpus callosum involvement in amyotrophic lateral sclerosis: a deterministic tractography study using q-ball imaging. J Neurol. 2014;261(1):27-36.
  • 12. Luders E, Cherbuin N, Thompson PM, Gutman B, Anstey KJ, Sachdev P, Toga AW. When more is less: Associations between corpus callosum size and handedness lateralization. NeuroImage. 2010;52(1):43-9.
  • 13. Josse G, Seghier ML, Kherif F, Price CJ. Explaining function with anatomy: Language lateralization and corpus callosum size. J. Neurosci. 2008;28(52):14132-9.
  • 14. Anstey KJ, Mack HA, Christensen H, Li SC, Reglade-Meslin C, Maller J, et al. Corpus callosum size, reaction time speed and variability in mild cognitive disorders and in a normative sample. Neuropsychologia. 2007;45(8):1911-20.
  • 15. Papadopoulou A-K, Samsouris C, Vlachos F, Badcock NA, Phylactou P, Papadatou-Pastou M. Exploring cerebral laterality of writing and the relationship to handedness: a functional transcranial Doppler ultrasound investigation. Laterality. 2024;29(1):117-50.
  • 16. Rogers LJ. Brain Lateralization and Cognitive Capacity. Animals (Basel). 2021;11(7).
  • 17. Stieger B, Palme R, Kaiser S, Sachser N, Richter SH. When left is right: The effects of paw preference training on behaviour in mice. Behav. Brain Res. 2022;430:113929.
  • 18. Ecevitoglu A, Soyman E, Canbeyli R, Unal G. Paw preference is associated with behavioural despair and spatial reference memory in male rats. Behav. Processes. 2020;180:104254.
  • 19. Wells DL. Paw preference as a tool for assessing emotional functioning and welfare in dogs and cats: A review. Applied Animal Behaviour Science. 2021;236:105148.
  • 20. Lin Y, Liu Q, Song N, Zhang E, Chen M. Food handling shapes the laterality of paw use in the Chinese red panda (Ailurus styani). Behav. Processes. 2022;200:104688.
  • 21. Güven M, Elalmiş DD, Binokay S, Tan U. Population-level right-paw preference in rats assessed by a new computerized food-reaching test. Int J Neurosci. 2003;113(12):1675-89.
  • 22. Elalmis DD, ÖZgÜNen KT, Binokay S, Tan M, ÖZgÜNen T, Tan Ü. DIFFERENTIAL CONTRIBUTIONS OF RIGHT AND LEFT BRAINS TO PAW SKILL IN RIGHT- AND LEFT-PAWED FEMALE RATS. Int. J. Neurosci. 2003;113(8):1023-41.
  • 23. Nachar N. The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution. TQMP. 2008;4(1):13-20.
  • 24. Nguyen N, Hai, An P, Phong Thi Thu H. Shortest Paths along a Sequence of Line Segments in Euclidean Spaces. Journal of Convex Analysis. 2019;26:1089–112.
  • 25. Wilson EB, Lewis GN. The Space-Time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics. Proceedings of the American Academy of Arts and Sciences. 1912;48(11):389-507.
  • 26. Kamath SG, Sreedhar VV. Classical radiation from a relativistic charge accelerated along a brachistochrone. Phys Rev A Gen Phys. 1987;36(5):2478-81.
  • 27. Sun P, Liu Y, Huang X. Exploring the brachistochrone (shortest-time) path in fire spread. Sci Rep. 2022;12(1):13600.
  • 28. Brown JW, HÉCaen H. Lateralization and language representation. Neurology. 1976;26(2):183.
  • 29. Hall JE, Hall ME. Guyton and Hall Textbook of Medical Physiology E-Book. 2020.
  • 30. Haines Duane E, Mihailoff Gregory A. Fundamental Neuroscience for Basic and Clinical Applications. 5 ed2017.
  • 31. Gainotti G. Emotions and the Right Hemisphere: Can New Data Clarify Old Models? Neuroscientist. 2019;25(3):258-70.
  • 32. Kim S-W, Kim M, Baek J, Latchoumane C-F, Gangadharan G, Yoon Y, et al. Hemispherically lateralized rhythmic oscillations in the cingulate-amygdala circuit drive affective empathy in mice. Neuron. 2023;111(3):418-29.e4.
  • 33. Allen HN, Bobnar HJ, Kolber BJ. Left and right hemispheric lateralization of the amygdala in pain. Prog. in Neurobiol. 2021;196:101891.
  • 34. MacNeilage P, Rogers L, Vallortigara G. Origins of the Left & Right Brain. Sci. Am. 2009;301:60-7.
  • 35. Sacco S, Moutard ML, Fagard J. Agenesis of the corpus callosum and the establishment of handedness. Dev Psychobiol. 2006;48(6):472-81.
  • 36. Karolis VR, Corbetta M, Thiebaut de Schotten M. The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nat Commun. 2019;10(1):1417.
  • 37. Ferreira Furtado LM, Bernardes HM, de Souza Félix Nunes FA, Gonçalves CA, Da Costa Val Filho JA, de Miranda AS. The Role of Neuroplasticity in Improving the Decision-Making Quality of Individuals With Agenesis of the Corpus Callosum: A Systematic Review. Cureus. 2022;14(6):e26082.
  • 38. Anstey KJ, Mack HA, Christensen H, Li SC, Reglade-Meslin C, Maller J, et al. Corpus callosum size, reaction time speed and variability in mild cognitive disorders and in a normative sample. Neuropsychologia. 2007;45(8):1911-20.
  • 39. Acer N, Çankaya MN, İşçi Ö, Baş O, Çamurdanoğlu M, Turgut M. Estimation of cerebral surface area using vertical sectioning and magnetic resonance imaging: A stereological study. Brain Res. 2010;1310:29-36.
There are 39 citations in total.

Details

Primary Language English
Subjects Brain and Nerve Surgery (Neurosurgery)
Journal Section Original Research
Authors

Mustafa Can Güler 0000-0001-8588-1035

Mehmet Kürşat Karadağ 0000-0001-9123-0597

Mehmet Aydin 0000-0002-0383-9739

Publication Date July 31, 2024
Submission Date April 12, 2024
Acceptance Date July 12, 2024
Published in Issue Year 2024

Cite

AMA Güler MC, Karadağ MK, Aydin M. A Neurophysical Hypothesis on the Role of the Intensity of the Electromagnetic Field Generated by the Cerebral Hemispheres in the Determination of Laterality, in Line with Einstein’s Unified Field Theory. J Contemp Med. July 2024;14(4):174-179. doi:10.16899/jcm.1467668