Research Article
BibTex RIS Cite

How Important Are Arterial Blood Gas Parameters for Severe Head Trauma in Children?

Year 2022, Volume: 12 Issue: 2, 319 - 324, 15.03.2022
https://doi.org/10.16899/jcm.1016696

Abstract

Aim: Our aim in this study is to consider the relationship between arterial blood gas (ABG) parameters and prognosis in severe head trauma in children.
Material and Methods: Patients younger than 17 years of age with a Glasgow Coma Scale (GCS) of 8 and below with a history of head trauma were retrospectively analyzed. The relation of ABG parameters taken at the time of admission with mortality was examined. Independent sample T-test was used for pH, PCO2 and base extract (BE) parameters in ABG, and Mann Whitney U test was used for PO2 and lactate parameters.
Results: 48 patients were included in the study. Gender, age, admission blood pressure arterial values, GCS and Abbreviated Injury Scale (AIS) scores, length of stay in intensive care, and the surgical application did not differ statistically between the patient groups who died and survived (p> 0.05). Ph and PO2 values were lower, PCO2, lactate and BE values were found to be higher in the deceased patient group compared to the living patient group (p˂0.05). The presence of acidosis, hypercapnia, or hyperlactatemia according to ABG values in the patient group who died was statistically significantly higher (p˂0.05).
Conclusion: In our study, we found that the presence of acidosis, hypercapnia, and hyperlactatemia in patients according to ABG values increased mortality. In addition, according to the results of ROC analysis, we found that high PCO2 and lactate values could be specific indicators indicating poor prognosis. We think that PCO2 and lactate measured in arterial blood may be biomarkers that can determine the prognosis.

References

  • 1. Araki T, Yokota H, Morita A. Pediatric traumatic brain injury: characteristic features, diagnosis, and management. Neurologia medico-chirurgica 2016;57(2):82-93.
  • 2. Dalbayrak S, Gumustas S, Bal A, Akansel G. Early and delayed CT findings in patients with mild-to-moderate head trauma. Turkish Neurosurgery 2011;21(4):591–8.
  • 3. Avarello JT, Cantor RM. Pediatric Major Trauma: An Approach to Evaluation and Management. Emergency Medicine Clinics of North America 2007;25(3):803–836.
  • 4. Yousefzadeh-Chabok S, Kazemnejad-Leili E, Kouchakinejad-Eramsadati L, et al. Comparing Pediatric Trauma, Glasgow Coma Scale and Injury Severity scores for mortality prediction in traumatic children. Turkish Journal of Trauma & Emergency Surgery 2016;22(4):328–32. 5. Takmaz İ. Ağır kafa travmalarında serumda protein S100B ve Nöron Spesifik Enolaz'ın prognostik değeri. PhD, Dicle Univeristy, Turkey, 2015.
  • 6. Moppett IK. Traumatic brain injury: assessment, resuscitationandearly management. British Journal of Anaesthesia 2007;99(1):18-31.
  • 7. Valadka AB, Robertson CS. Surgery of cerebral trauma and associated critical care. Neurosurgery 2007;61(1):203-20.
  • 8. Fu YQ, Bai K, Liu CJ. The impact of admission serum lactate on children with moderate to severe traumatic brain injury. PloS one 2019;14(9):0222591.
  • 9. Sezer AA, Akıncı E, Öztürk M, et al. The role of blood S100B and lactate levels in minor head traumas in children and adults and correlation with brain computerized tomography. Turkish Journal of Trauma & Emergency Surgery 2012;18(5):411-416.
  • 10. Giden R, Gokdemir MT, Erel O, Buyukaslan H, Karabag H. The relationship between kan thiol levels and thiol/disulfide homeostasis with head trauma in children. Clinical Laboratory 2018;64(1):163-168.
  • 11. Fu YQ, Chong SL, Lee JH, et al. The impact of early hyperglycemia on children with traumatic brain injury. Brain Injury 2017;31(3):396–400. 12. Stiefel MF, Spiotta A, Gracias VH, Garuffe AM, Guillamondegui O, Maloney-Wilenskyet E, et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. Journal of Neurosurgery 2005;103(5):805-11.
  • 13. von Auenmueller KI, Christ M, Sasko BM, Trappe HJ. The value of arterial blood gas parameters for prediction of mortality in survivors of out-of-hospital cardiac arrest. Journal of emergencies, trauma, and shock 2017;10(3):134.
  • 14. Kakavas S, Papanikolaou A, Ballis E, Tatsis N, Goga C, Tatsis G. Carboxyhemoglobin and methemoglobin levels as prognostic markers in acute pulmonary embolism. The American journal of emergency medicine. 2015;33(4):563-568.
  • 15. Sarnaik AP, Heidemann SM. Respiratory pathophysiology and regulation. In: Behrman RE, Kliegman RM, Jenson HB (editors). Nelson Textbook of Pediatrics. 18th ed. Philadelphia: WB Saunders; 2007.pp. 1719-1726.
  • 16. Palmer BF, Clegg DJ. Electrolyte and acid–base disturbances in patients with diabetes mellitus. New England Journal of Medicine 2015;373(6):548-559.
  • 17. Álvarez JML, Lemaur MEV, Quevedo OP, et al. Severe pediatric head injuries (I). Epidemiology, clinical manifestations and course. Medicina Intensiva. 2011;35(6):331–336.
  • 18. Clausen T, Khaldi A, Zauner A, et al. Cerebral acid–base homeostasis after severe traumatic brain injury. Journal of Neurosurgery 2005;103(4):597–607.
  • 19. Tran ND, Kim S, Vincent HK, et al. Aquaporin-1-mediated cerebral edema following traumatic brain injury: effects of acidosis and corticosteroid administration. Journal of Neurosurgery 2010;112(5):1095–1104.
  • 20. Kushi H, Moriya T, Saito T, et al. Importance of metabolic monitoring systems as an early prognostic indicator in severe head-injured patients. Acta Neurochirurgica Supplement 1999;75:67-8.
  • 21. Karamanos E, Talving P, Skiada D, et al. Is prehospital endotracheal intubation associated with improved outcomes in isolated severe head injury? A matched cohort analysis. Prehospital and Disaster Medicine 2014;29(1):32-36.
  • 22. Cooper A, DiScala C, Foltin G, Tunik M, Markenson D, Welborn C. Prehospital endotracheal intubations for severe head injury in children: a reappraisal. Seminars in Pediatric Surgery 2001;10(1):3-6.
  • 23. Stocchetti N, Furlan A, Volta F. Hypoxemia and arterial hypotension at the accident scene in head injury. The Journal of Trauma and Acute Care Surgery 1996;40(5):764-7.
  • 24. Zebrack M, Dandoy C, Hansen K, Scaife E, Mann NC, Bratton SL. Early Resuscitation of Children with Moderate-to-Severe Traumatic Brain Injury. Pediatrics 2009;124(1):56–64.
  • 25. Chi JH, Knudson MM, Vassar MJ, et al. Prehospital hypoxia affects outcome in patients with traumatic brain injury: a prospective multicenter study. The Journal of Trauma 2006;61:1134–41
  • 26. Chiaretti A, Piastra M, Pulitano S, et al. Prognostic factors and outcome of children with severe head injury: an8-year experience. Child's Nervous System 2002;18:129-36.
  • 27. Rahimi S, Bidabadi E, Mashouf M, Saadat SMS, Rahimi S. Prognostic value of arterial blood gas disturbances for in-hospital mortality in pediatric patients with severe traumatic brain injury. Acta neurochirurgica 2014;156(1):187-92.
  • 28. Popović VV, Lesjak VB, Pelcl T, Strnad M. Impact of pre-hospital oxygenation and ventilation status on outcome in patients with isolated severe traumatic brain injury. Signa Vitae 2014;9(1):42-6.
  • 29. Bazzazi A, Hasanloei MAV, Mahoori AR, Gholamnejad M, Tarverdipour H. Correlation between arterial blood gas analysis and outcome in patients with severe head trauma. Turkish Journal of Trauma & Emergency Surgery 2014;20(4):236-40.
  • 30. Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. Critical Care Medicine 2010;38(5):1348–59.
  • 31. Dumont TM, Visioni AJ, Rughani AI, Tranmer BI, Crookes B. Inappropriate prehospital ventilation in severe traumatic brain injury increases in-hospital mortality. Journal of Neurotrauma 2010;27(7):1233-41.
  • 32. Quintard H, Patet C, Zerlauth JB, et al. Improvement of Neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. Journal of Neurotrauma 2010;33(7):681-7.
  • 33. Carteron L, Solari D, Patet C, et al. Hypertonic lactate to improve cerebral perfusion and glucose availability after acute brain injury. Critical Care Medicine 2018;46(10):1649-55.
  • 34. Bouzat P, Sala N, Suys T, et al. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Medicine 2014;40(3):412-21.
  • 35. Juneja D, Singh O, Dang R. Admission hyperlactatemia: causes, incidence, and impact on outcome of patients admitted in a general medical intensive care unit. Journal of Critical Care 2011;26(3):316–20.
  • 36. Cerovic O, Golubovic V, SpecMarn A, Kremzar B, Vidmar G. Relationship between injury severity and lactate levels in severely injured patients. Intensive Care Medicine 2003;29(8):1300-05.
  • 37. Wettervik TS, Engquist H, Howells T, et al. Arterial lactate in traumatic brain injury – Relation to intracranial pressure dynamics, cerebral energy metabolism and clinical outcome. Journal of Critical Care 2020;19(60):218–25.
  • 38- Ramanathan R, Parrish DW, Hartwich JE, Haynes JH. Utility of admission serum lactate in pediatric trauma. Journal of Pediatric Surgery 2015;50(4):598–603.
  • 39. Shah A, Guyette F, Suffoletto B, et al. Diagnostic accuracy of a single point-of-care prehospital serum lactate for predicting outcomes in pediatric trauma patients. Pediatric Emergency Care 2013;29(6):715–19.
  • 40. Paydar S, Fazelzadeh A, Abbasi H, Bolandparvaz S. Base deficit: a better indicator for diagnosis and treatment of shock in trauma patients. Journal of Trauma 2011;70(6):1580-1.
  • 41. Hodgman EI, Morse BC, Dente CJ, et al. Base deficit as a marker of survival after traumatic injury: consistent across changing patient populations and resuscitation paradigms. Journal of Trauma and Acute Care Surgery 2012;72(4):844-1.
  • 42. Joseph B, Pandit V, Aziz H, et al. Mild traumatic brain injury defined by Glasgow Coma Scale: is it really mild?. Brain Injury 2015;29(1):11-6.

Çocuklarda Ağır Kafa Travmalarında Arter Kan Gazı Parametreleri Ne Kadar Önemlidir?

Year 2022, Volume: 12 Issue: 2, 319 - 324, 15.03.2022
https://doi.org/10.16899/jcm.1016696

Abstract

Amaç: Bu çalışmadaki amacımız, çocuklarda şiddetli kafa travmasında arteriyel kan gazı (AKG) parametreleri ile prognoz arasındaki ilişkiyi ele almaktır.
Gereç ve Yöntem: Glasgow Koma Skalası (GKS) 8 ve altında olan ve kafa travması öyküsü olan 17 yaşından küçük hastalar geriye dönük olarak incelendi. Başvuru anında alınan AKG parametrelerinin mortalite ile olan ilişkisi incelendi. AKG'da pH, PCO2 ve baz ekstraktı (BE) parametreleri için bağımsız örnek T- testi, PO2 ve laktat parametreleri için ise Mann Whitney U testi kullanıldı.
Bulgular: Çalışmaya 48 hasta alındı. Ölen ve yaşayan hasta grupları arasında cinsiyet, yaş, başvuru tansiyon arter değerleri, GKS ve Kısaltılmış Yaralanma Skalası (AIS) skorları, yoğun bakımda kalış süresi ve cerrahi uygulama istatistiksel olarak farklılık göstermedi (p> 0.05). Ölen hasta grubunda yaşayan hasta grubuna göre Ph ve PO2 değerleri daha düşük, PCO2, laktat ve BE değerleri daha yüksek bulundu (p˂0.05). Ölen hasta grubunda AKG değerlerine göre asidoz, hiperkapni veya hiperlaktatemi varlığı istatistiksel olarak anlamlı derecede yüksekti (p˂0.05).
Sonuç: Çalışmamızda AKG değerlerine göre hastalarda asidoz, hiperkapni ve hiperlaktatemi varlığının mortaliteyi artırdığını bulduk. Ayrıca ROC analizi sonuçlarına göre yüksek PCO2 ve laktat değerlerinin kötü prognozu gösteren spesifik göstergeler olabileceğini saptadık. Arter kanında ölçülen PCO2 ve laktatın prognozu belirleyebilecek biyobelirteçler olabileceğini düşünüyoruz.

References

  • 1. Araki T, Yokota H, Morita A. Pediatric traumatic brain injury: characteristic features, diagnosis, and management. Neurologia medico-chirurgica 2016;57(2):82-93.
  • 2. Dalbayrak S, Gumustas S, Bal A, Akansel G. Early and delayed CT findings in patients with mild-to-moderate head trauma. Turkish Neurosurgery 2011;21(4):591–8.
  • 3. Avarello JT, Cantor RM. Pediatric Major Trauma: An Approach to Evaluation and Management. Emergency Medicine Clinics of North America 2007;25(3):803–836.
  • 4. Yousefzadeh-Chabok S, Kazemnejad-Leili E, Kouchakinejad-Eramsadati L, et al. Comparing Pediatric Trauma, Glasgow Coma Scale and Injury Severity scores for mortality prediction in traumatic children. Turkish Journal of Trauma & Emergency Surgery 2016;22(4):328–32. 5. Takmaz İ. Ağır kafa travmalarında serumda protein S100B ve Nöron Spesifik Enolaz'ın prognostik değeri. PhD, Dicle Univeristy, Turkey, 2015.
  • 6. Moppett IK. Traumatic brain injury: assessment, resuscitationandearly management. British Journal of Anaesthesia 2007;99(1):18-31.
  • 7. Valadka AB, Robertson CS. Surgery of cerebral trauma and associated critical care. Neurosurgery 2007;61(1):203-20.
  • 8. Fu YQ, Bai K, Liu CJ. The impact of admission serum lactate on children with moderate to severe traumatic brain injury. PloS one 2019;14(9):0222591.
  • 9. Sezer AA, Akıncı E, Öztürk M, et al. The role of blood S100B and lactate levels in minor head traumas in children and adults and correlation with brain computerized tomography. Turkish Journal of Trauma & Emergency Surgery 2012;18(5):411-416.
  • 10. Giden R, Gokdemir MT, Erel O, Buyukaslan H, Karabag H. The relationship between kan thiol levels and thiol/disulfide homeostasis with head trauma in children. Clinical Laboratory 2018;64(1):163-168.
  • 11. Fu YQ, Chong SL, Lee JH, et al. The impact of early hyperglycemia on children with traumatic brain injury. Brain Injury 2017;31(3):396–400. 12. Stiefel MF, Spiotta A, Gracias VH, Garuffe AM, Guillamondegui O, Maloney-Wilenskyet E, et al. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. Journal of Neurosurgery 2005;103(5):805-11.
  • 13. von Auenmueller KI, Christ M, Sasko BM, Trappe HJ. The value of arterial blood gas parameters for prediction of mortality in survivors of out-of-hospital cardiac arrest. Journal of emergencies, trauma, and shock 2017;10(3):134.
  • 14. Kakavas S, Papanikolaou A, Ballis E, Tatsis N, Goga C, Tatsis G. Carboxyhemoglobin and methemoglobin levels as prognostic markers in acute pulmonary embolism. The American journal of emergency medicine. 2015;33(4):563-568.
  • 15. Sarnaik AP, Heidemann SM. Respiratory pathophysiology and regulation. In: Behrman RE, Kliegman RM, Jenson HB (editors). Nelson Textbook of Pediatrics. 18th ed. Philadelphia: WB Saunders; 2007.pp. 1719-1726.
  • 16. Palmer BF, Clegg DJ. Electrolyte and acid–base disturbances in patients with diabetes mellitus. New England Journal of Medicine 2015;373(6):548-559.
  • 17. Álvarez JML, Lemaur MEV, Quevedo OP, et al. Severe pediatric head injuries (I). Epidemiology, clinical manifestations and course. Medicina Intensiva. 2011;35(6):331–336.
  • 18. Clausen T, Khaldi A, Zauner A, et al. Cerebral acid–base homeostasis after severe traumatic brain injury. Journal of Neurosurgery 2005;103(4):597–607.
  • 19. Tran ND, Kim S, Vincent HK, et al. Aquaporin-1-mediated cerebral edema following traumatic brain injury: effects of acidosis and corticosteroid administration. Journal of Neurosurgery 2010;112(5):1095–1104.
  • 20. Kushi H, Moriya T, Saito T, et al. Importance of metabolic monitoring systems as an early prognostic indicator in severe head-injured patients. Acta Neurochirurgica Supplement 1999;75:67-8.
  • 21. Karamanos E, Talving P, Skiada D, et al. Is prehospital endotracheal intubation associated with improved outcomes in isolated severe head injury? A matched cohort analysis. Prehospital and Disaster Medicine 2014;29(1):32-36.
  • 22. Cooper A, DiScala C, Foltin G, Tunik M, Markenson D, Welborn C. Prehospital endotracheal intubations for severe head injury in children: a reappraisal. Seminars in Pediatric Surgery 2001;10(1):3-6.
  • 23. Stocchetti N, Furlan A, Volta F. Hypoxemia and arterial hypotension at the accident scene in head injury. The Journal of Trauma and Acute Care Surgery 1996;40(5):764-7.
  • 24. Zebrack M, Dandoy C, Hansen K, Scaife E, Mann NC, Bratton SL. Early Resuscitation of Children with Moderate-to-Severe Traumatic Brain Injury. Pediatrics 2009;124(1):56–64.
  • 25. Chi JH, Knudson MM, Vassar MJ, et al. Prehospital hypoxia affects outcome in patients with traumatic brain injury: a prospective multicenter study. The Journal of Trauma 2006;61:1134–41
  • 26. Chiaretti A, Piastra M, Pulitano S, et al. Prognostic factors and outcome of children with severe head injury: an8-year experience. Child's Nervous System 2002;18:129-36.
  • 27. Rahimi S, Bidabadi E, Mashouf M, Saadat SMS, Rahimi S. Prognostic value of arterial blood gas disturbances for in-hospital mortality in pediatric patients with severe traumatic brain injury. Acta neurochirurgica 2014;156(1):187-92.
  • 28. Popović VV, Lesjak VB, Pelcl T, Strnad M. Impact of pre-hospital oxygenation and ventilation status on outcome in patients with isolated severe traumatic brain injury. Signa Vitae 2014;9(1):42-6.
  • 29. Bazzazi A, Hasanloei MAV, Mahoori AR, Gholamnejad M, Tarverdipour H. Correlation between arterial blood gas analysis and outcome in patients with severe head trauma. Turkish Journal of Trauma & Emergency Surgery 2014;20(4):236-40.
  • 30. Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. Critical Care Medicine 2010;38(5):1348–59.
  • 31. Dumont TM, Visioni AJ, Rughani AI, Tranmer BI, Crookes B. Inappropriate prehospital ventilation in severe traumatic brain injury increases in-hospital mortality. Journal of Neurotrauma 2010;27(7):1233-41.
  • 32. Quintard H, Patet C, Zerlauth JB, et al. Improvement of Neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. Journal of Neurotrauma 2010;33(7):681-7.
  • 33. Carteron L, Solari D, Patet C, et al. Hypertonic lactate to improve cerebral perfusion and glucose availability after acute brain injury. Critical Care Medicine 2018;46(10):1649-55.
  • 34. Bouzat P, Sala N, Suys T, et al. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Medicine 2014;40(3):412-21.
  • 35. Juneja D, Singh O, Dang R. Admission hyperlactatemia: causes, incidence, and impact on outcome of patients admitted in a general medical intensive care unit. Journal of Critical Care 2011;26(3):316–20.
  • 36. Cerovic O, Golubovic V, SpecMarn A, Kremzar B, Vidmar G. Relationship between injury severity and lactate levels in severely injured patients. Intensive Care Medicine 2003;29(8):1300-05.
  • 37. Wettervik TS, Engquist H, Howells T, et al. Arterial lactate in traumatic brain injury – Relation to intracranial pressure dynamics, cerebral energy metabolism and clinical outcome. Journal of Critical Care 2020;19(60):218–25.
  • 38- Ramanathan R, Parrish DW, Hartwich JE, Haynes JH. Utility of admission serum lactate in pediatric trauma. Journal of Pediatric Surgery 2015;50(4):598–603.
  • 39. Shah A, Guyette F, Suffoletto B, et al. Diagnostic accuracy of a single point-of-care prehospital serum lactate for predicting outcomes in pediatric trauma patients. Pediatric Emergency Care 2013;29(6):715–19.
  • 40. Paydar S, Fazelzadeh A, Abbasi H, Bolandparvaz S. Base deficit: a better indicator for diagnosis and treatment of shock in trauma patients. Journal of Trauma 2011;70(6):1580-1.
  • 41. Hodgman EI, Morse BC, Dente CJ, et al. Base deficit as a marker of survival after traumatic injury: consistent across changing patient populations and resuscitation paradigms. Journal of Trauma and Acute Care Surgery 2012;72(4):844-1.
  • 42. Joseph B, Pandit V, Aziz H, et al. Mild traumatic brain injury defined by Glasgow Coma Scale: is it really mild?. Brain Injury 2015;29(1):11-6.
There are 40 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Research
Authors

Murat Kayabaş 0000-0002-5768-2925

Levent Şahin 0000-0003-0193-4393

Early Pub Date January 1, 2022
Publication Date March 15, 2022
Acceptance Date March 4, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

AMA Kayabaş M, Şahin L. How Important Are Arterial Blood Gas Parameters for Severe Head Trauma in Children?. J Contemp Med. March 2022;12(2):319-324. doi:10.16899/jcm.1016696