Clinical Research
BibTex RIS Cite

"Epikard Yağ Dokusu Artışı ile Aort Genişlemesi Arasındaki İlişki: Hipertansiyon Komplikasyonlarının Göstergesi Olabilir"

Year 2023, Volume: 13 Issue: 6, 1109 - 1116, 30.11.2023

Abstract

Öz
Arka plan/Amaç: Epikardiyal yağ dokusu (EFT), miyokardın yüzeyinde ve visseral perikardın altındaki yağ dokusunu ifade eder. Endokrin sisteme ve miyokardın enerji metabolizmasına katılır. Bu çalışma, aort dilatasyonu ile ilişkili hipertansiyon (HT) komplikasyonları için EFT'nin non invaziv bir belirteç olma potansiyelini araştırmayı amaçlamıştır.
Yöntem: Çalışmanın sağlıklı kontrol (HC) grubunu tansiyonu normal olan 70 hasta, HT grubunu ise tansiyonu yüksek olan 82 hasta oluşturdu. HT grupları prehipertansif, evre 1, evre 2 ve evre 3 olmak üzere dört kategoriye ayrıldı. EFT parasternal uzun eksenden iki boyutlu ekokardiyografi ile değerlendirilerek HC ve HT grupları arasında karşılaştırıldı.
Bulgular: HT grubunda EFT kalınlığı HC'ye göre oldukça yüksekti (5,7±1,9 vs 4,0±1,3, p<0,05). Çok değişkenli regresyon analizinde ofis kan basıncı (p<0,05, %95 GA 0,827-0,935), ejeksiyon fraksiyonu (p<0,05, %95 GA 1,033-1,495) ve EFT (p<0,05, %95 GA 0,413-0,807) HT ve HC gruplarının ayrılmasında bağımsız değişkenler olduğu bulunmuştur. EFT kalınlığının duyarlılığı 73,2, özgüllüğü ise 4,15 kesme değerinde %57,1 idi. EFT sırasıyla sinüs valsalva (r2=0.08, p<0.05), sinotubüler bileşke (r2=0.06, p<0.05) ve aort çıkış çapı (r2=0.07, p<0.05) ile anlamlı düzeyde koreleydi. HT alt grupları arasında EFT'de herhangi bir farklılık tespit edilmedi.
Sonuç: EFT, HT ile ilişkili komplikasyon riskinin arttığını ortaya koyan bir belirteç olabilir.

References

  • 1. Bolívar JJ. Essential hypertension: an approach to its etiology and neurogenic pathophysiology. Int J Hypertens 2013; 2013: 547809.
  • 2. Warren HR, Evangelou E, Cabrera CP, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 2017; 49(3): 403-415.
  • 3. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017; 389(10064): 37-55.
  • 4. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365(9455): 217-23.
  • 5. Thom S. Arterial structural modifications in hypertension. Effects of treatment. Eur Heart J 1997; 18 Suppl E, E2–E4.
  • 6. Martinez-Quinones P, McCarthy CG, Watts SW, et al. Hypertension Induced Morphological and Physiological Changes in Cells of the Arterial Wall. Am J Hypertens 2018; 31(10): 1067–1078.
  • 7. Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res 2015; 116(6): 1007–1021.
  • 8. Lough ME. Cardiovascular anatomy and physiology. Critical Care Nursing-E-Book: Diagnosis and Management 2013; 200.
  • 9. GBD 2017 Risk Factor Collaborators. Erratum: Global, regional, and national comparative risk assessment of 84 behavioral, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 (The Lancet (2018) 392 (10159) (1923–1994), (S0140673618322256), (10.1016/S0140-6736 (18) 32225-6)). The Lancet 2019; 393(10190), e44.
  • 10. Shere A, Eletta O, Goyal H. Circulating blood biomarkers in essential hypertension: a literature review. J Lab Precis Med 2017; 2: 99.
  • 11. Xue Y, Iqbal N, Chan J, Maisel A. Biomarkers in hypertension and their relationship with myocardial target-organ damage. Curr Hypertens Rep 2014; 16(12): 502.
  • 12. Wang TJ, Gona P, Larson MG, et al. Multiple biomarkers and the risk of incident hypertension. Hypertension 2007; 49(3): 432–438.
  • 13. Liu CH. Anatomical, functional, and molecular biomarker applications of magnetic resonance neuroimaging. Future Neurol 2015; 10(1): 49–65.
  • 14. Iacobellis G. Epicardial fat thickness as a biomarker in cardiovascular disease. Biomarkers in Cardiovascular Disease. Dordrecht: Springer 2013; 1-11.
  • 15. Austys D, Dobrovolskij A, Jablonskiene V, Dobrovolskij V, Valeviciene N, Stukas, R. Epicardial Adipose Tissue Accumulation and Essential Hypertension in Non-Obese Adults. Medicina (Kaunas, Lithuania) 2019; 55(8): 456.
  • 16. Blancas Sánchez IM, Aristizábal-Duque CH, Fernández Cabeza J, et al. Role of obesity and blood pressure in epicardial adipose tissue thickness in children. Pediatr Res 2022; 10.1038/s41390-022-02022-x.
  • 17. du Toit WL, Schutte AE, Gafane-Matemane LF, Kruger R, Mels CMC. The renin- angiotensin-system and left ventricular mass in young adults: the African-PREDICT study. Blood Press 2021; 30(2): 98-107.
  • 18. Topuz M, Dogan A. The effect of epicardial adipose tissue thickness on left ventricular diastolic functions in patients with normal coronary arteries. Kardiol Pol 2017; 75(3): 196-203.
  • 19. Guan B, Liu L, Li,X, et al. Association between epicardial adipose tissue and blood pressure: A systematic review and meta-analysis. Nutrition, metabolism, and cardiovascular diseases: NMCD 2021; 31(9): 2547–2556.
  • 20. Dicker D, Atar E, Kornowski, R, Bachar GN. Increased epicardial adipose tissue thickness as a predictor for hypertension: a cross-sectional observational study. J Clin Hypertens (Greenwich, Conn.) 2013; 15(12): 893–898.
  • 21. Kim JS, Kim SW, Lee JS, et al. Association of pericardial adipose tissue with left ventricular structure and function: a region‐specific effect? Cardiovasc Diabetol 2021; 20(1): 1-9.
  • 22. Devereux RB, Roman MJ. Left ventricular hypertrophy in hypertension: stimuli, patterns, and consequences. Hypertens Res 1999; 22(1): 1-9.
  • 23. Peluso D, Badano LP, Muraru D, et al. Right atrial size and function assessed with three-dimensional and speckle-tracking echocardiography in 200 healthy volunteers. Eur Heart J Cardiovasc 2013; 14(11): 1106-1114.
  • 24. Zoungas S, Asmar RP. Arterial stiffness and cardiovascular outcome. Clin Exp Pharmacol 2007; 34(7): 647-651.
  • 25. Humphrey JD. Cardiovascular solid mechanics: cells, tissues, and organs. Springer Science & Business Media 2013.
  • 26. Verma S, Siu SC. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med 2014; 370(20): 1920-1929.
  • 27. Michelena HI, Khanna AD, Mahoney D. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA 2011; 306(10): 1104-1112.
  • 28. Mazurek T, Kiliszek M, Kobylecka M, et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am J Cardiol 2014; 113(9): 1505-1508.
  • 29. Baker AR, Da Silva NF, Quinn DW, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol 2006; 5(1): 1-7.
  • 30. Sengul C, Cevik C, Ozveren O, et al. Echocardiographic epicardial fat thickness is associated with carotid intima‐media thickness in patients with metabolic syndrome. Echocardiography 2011; 28(8): 853-858.

"Relationship between Increased Epicardial Fat Tissue and Aortic Dilatation: may be an Indicator of Hypertension Complications"

Year 2023, Volume: 13 Issue: 6, 1109 - 1116, 30.11.2023

Abstract

Abstract
Background/Aims: Epicardial fat tissue (EFT) refers to the adipose tissue on the myocardium's surface and beneath the visceral pericardium. It participates in the endocrine system as well as the myocardium's energy metabolism. This study aimed to investigate the potential of EFT as a noninvasive marker for hypertension (HT) complications associated with aortic dilatation.
Methods: The study's healthy control (HC) group consisted of 70 patients with normal blood pressure and the HT group consisted of 82 patients with higher blood pressure. HT groups were separated into four categories, prehypertensive, stage 1, stage 2, and stage 3. EFT was assessed by two-dimensional echocardiography from the parasternal long axis and compared between the HC and the HT groups.
Results: The EFT thickness in the HT group was considerably higher than in the HC (5.7±1.9 vs 4.0±1.3, p<0.05). In multivariate regression analysis, office blood pressure (p<0.05, 95% CI 0.827-0.935), ejection fraction (p<0.05, 95% CI 1.033-1.495), and EFT (p<0.05, 95% CI 0.413-0.807) were found to be independent variables in the separation of HT and HC groups. EFT thickness had a sensitivity of 73.2 and a specificity of 57.1% at a cut-off value of 4.15. EFT was significantly correlated with sinus valsalva (r2=0.08, p<0.05), sinotubular junction (r2=0.06, p<0.05), and aorta ascendence diameter (r2=0.07, p<0.05), respectively. EFT among HT subgroups, no differences were identified.
Conclusion: EFT can be a marker revealing an increased risk of HT-related complications.

Ethical Statement

Ethics Committee Approval: Our study was approved by the Ethics Committee of the University of Health Sciences, with the decision of the ethics committee numbered 22/465

References

  • 1. Bolívar JJ. Essential hypertension: an approach to its etiology and neurogenic pathophysiology. Int J Hypertens 2013; 2013: 547809.
  • 2. Warren HR, Evangelou E, Cabrera CP, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 2017; 49(3): 403-415.
  • 3. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017; 389(10064): 37-55.
  • 4. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365(9455): 217-23.
  • 5. Thom S. Arterial structural modifications in hypertension. Effects of treatment. Eur Heart J 1997; 18 Suppl E, E2–E4.
  • 6. Martinez-Quinones P, McCarthy CG, Watts SW, et al. Hypertension Induced Morphological and Physiological Changes in Cells of the Arterial Wall. Am J Hypertens 2018; 31(10): 1067–1078.
  • 7. Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res 2015; 116(6): 1007–1021.
  • 8. Lough ME. Cardiovascular anatomy and physiology. Critical Care Nursing-E-Book: Diagnosis and Management 2013; 200.
  • 9. GBD 2017 Risk Factor Collaborators. Erratum: Global, regional, and national comparative risk assessment of 84 behavioral, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 (The Lancet (2018) 392 (10159) (1923–1994), (S0140673618322256), (10.1016/S0140-6736 (18) 32225-6)). The Lancet 2019; 393(10190), e44.
  • 10. Shere A, Eletta O, Goyal H. Circulating blood biomarkers in essential hypertension: a literature review. J Lab Precis Med 2017; 2: 99.
  • 11. Xue Y, Iqbal N, Chan J, Maisel A. Biomarkers in hypertension and their relationship with myocardial target-organ damage. Curr Hypertens Rep 2014; 16(12): 502.
  • 12. Wang TJ, Gona P, Larson MG, et al. Multiple biomarkers and the risk of incident hypertension. Hypertension 2007; 49(3): 432–438.
  • 13. Liu CH. Anatomical, functional, and molecular biomarker applications of magnetic resonance neuroimaging. Future Neurol 2015; 10(1): 49–65.
  • 14. Iacobellis G. Epicardial fat thickness as a biomarker in cardiovascular disease. Biomarkers in Cardiovascular Disease. Dordrecht: Springer 2013; 1-11.
  • 15. Austys D, Dobrovolskij A, Jablonskiene V, Dobrovolskij V, Valeviciene N, Stukas, R. Epicardial Adipose Tissue Accumulation and Essential Hypertension in Non-Obese Adults. Medicina (Kaunas, Lithuania) 2019; 55(8): 456.
  • 16. Blancas Sánchez IM, Aristizábal-Duque CH, Fernández Cabeza J, et al. Role of obesity and blood pressure in epicardial adipose tissue thickness in children. Pediatr Res 2022; 10.1038/s41390-022-02022-x.
  • 17. du Toit WL, Schutte AE, Gafane-Matemane LF, Kruger R, Mels CMC. The renin- angiotensin-system and left ventricular mass in young adults: the African-PREDICT study. Blood Press 2021; 30(2): 98-107.
  • 18. Topuz M, Dogan A. The effect of epicardial adipose tissue thickness on left ventricular diastolic functions in patients with normal coronary arteries. Kardiol Pol 2017; 75(3): 196-203.
  • 19. Guan B, Liu L, Li,X, et al. Association between epicardial adipose tissue and blood pressure: A systematic review and meta-analysis. Nutrition, metabolism, and cardiovascular diseases: NMCD 2021; 31(9): 2547–2556.
  • 20. Dicker D, Atar E, Kornowski, R, Bachar GN. Increased epicardial adipose tissue thickness as a predictor for hypertension: a cross-sectional observational study. J Clin Hypertens (Greenwich, Conn.) 2013; 15(12): 893–898.
  • 21. Kim JS, Kim SW, Lee JS, et al. Association of pericardial adipose tissue with left ventricular structure and function: a region‐specific effect? Cardiovasc Diabetol 2021; 20(1): 1-9.
  • 22. Devereux RB, Roman MJ. Left ventricular hypertrophy in hypertension: stimuli, patterns, and consequences. Hypertens Res 1999; 22(1): 1-9.
  • 23. Peluso D, Badano LP, Muraru D, et al. Right atrial size and function assessed with three-dimensional and speckle-tracking echocardiography in 200 healthy volunteers. Eur Heart J Cardiovasc 2013; 14(11): 1106-1114.
  • 24. Zoungas S, Asmar RP. Arterial stiffness and cardiovascular outcome. Clin Exp Pharmacol 2007; 34(7): 647-651.
  • 25. Humphrey JD. Cardiovascular solid mechanics: cells, tissues, and organs. Springer Science & Business Media 2013.
  • 26. Verma S, Siu SC. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med 2014; 370(20): 1920-1929.
  • 27. Michelena HI, Khanna AD, Mahoney D. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA 2011; 306(10): 1104-1112.
  • 28. Mazurek T, Kiliszek M, Kobylecka M, et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am J Cardiol 2014; 113(9): 1505-1508.
  • 29. Baker AR, Da Silva NF, Quinn DW, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol 2006; 5(1): 1-7.
  • 30. Sengul C, Cevik C, Ozveren O, et al. Echocardiographic epicardial fat thickness is associated with carotid intima‐media thickness in patients with metabolic syndrome. Echocardiography 2011; 28(8): 853-858.
There are 30 citations in total.

Details

Primary Language English
Subjects ​Internal Diseases
Journal Section Original Research
Authors

Nurullah Yücel 0000-0003-2689-4287

Tayfun Aygun 0000-0001-5058-3513

Meryem Esma Düz 0000-0002-6815-2540

Gulam Hekimoğlu 0000-0002-5027-6756

Mustafa Ahmet Huyut 0000-0001-8740-1429

Mehmet Kızılay 0000-0001-9577-388X

Muzaffer Şeker 0000-0002-6852-3030

Publication Date November 30, 2023
Acceptance Date November 19, 2023
Published in Issue Year 2023 Volume: 13 Issue: 6

Cite

AMA Yücel N, Aygun T, Düz ME, Hekimoğlu G, Huyut MA, Kızılay M, Şeker M. "Relationship between Increased Epicardial Fat Tissue and Aortic Dilatation: may be an Indicator of Hypertension Complications". J Contemp Med. November 2023;13(6):1109-1116.