Review
BibTex RIS Cite

Improving Performance Through Nutrition: Muscle Recovery Strategies

Year 2024, Volume: 14 Issue: 5, 273 - 279, 25.09.2024

Abstract

Muscle recovery and nutrition play a crucial role in enhancing an athlete's performance, maintaining a healthy body and accelerating recovery. Proper nutrition ensures that the body receives essential nutrients such as protein, carbohydrates, fats and other nutrients required for muscle repair and growth, which are critical for muscle recovery and strengthening. A sound nutritional strategy not only enhances an athlete's performance and reduces the risk of injury, but also promotes overall health and well-being. The use of performance-enhancing products is current, but not new to mankind. Substances that enhance performance, reduce fatigue, aid recovery and potentially influence decisiveness has been utilized since ancient times in the form of stimulants, depressants or anabolic agents. In addition, maintaining fluid balance and preventing dehydration are critical not only to an athlete's performance, but also to their overall health. In some sports, in addition to fluid and electrolyte intake, carbohydrate intake is also important, as carbohydrates consumed with fluid are easier to transport and metabolise in the body. In recent years, the effect of coenzyme Q10 supplementation, known for its important role in cellular bioenergetics and redox reactions as well as its antioxidant properties, on post-exercise muscle tissue recovery has attracted attention. While the potential benefits of supplementation in this area are intriguing, further research is necessary to illuminate its effects.

Ethical Statement

ETHICAL DECLARATIONS Referee Evaluation Process Externally peer reviewed. Conflict of Interest Statement The authors have no conflicts of interest to declare. Financial Disclosure The authors declared that this study has received no financial support. Author Contributions All the authors declare that they have all participated in the design, execution, and analysis of the paper, and that they have approved the final version.

References

  • 1. Maughan R. Dietary Supplements and the High-Performance Athlete. Int J Sport Nutr Exerc Metab. 2018;28:101.
  • 2. Drobnic F, Lizarraga MA, Caballero-García A, Cordova A. Coenzyme Q10 Supplementation and Its Impact on Exercise and Sport Performance in Humans: A Recovery or a Performance-Enhancing Molecule? Nutrients. 2022;14:1811.
  • 3. Sousa M, Teixeira VH, Soares J. Dietary strategies to recover from exercise-induced muscle damage. Int J Food Sci Nutr. 2013;65:151-163.
  • 4. Mielgo-Ayuso J, Fernández-Lázaro D. Nutrition and Muscle Recovery. Nutrients. 2021;13:294.
  • 5. Córdova-Martínez A, Caballero-García A, Bello HJ, Pérez-Valdecantos D, Roche E. Effect of Glutamine Supplementation on Muscular Damage Biomarkers in Professional Basketball Players. Nutrients. 2021;13(6):2073.
  • 6. Caballero-García A, Córdova-Martínez A. Muscle Recovery and Nutrition. Nutrients. 2022;14:2416.
  • 7. Mielgo-Ayuso J, Fernández-Lázaro D. Nutrition and Muscle Recovery. Nutrients. 2021 Jan 20;13(2):294.
  • 8. Smith JL, Brown HA. Psychological resilience and stress management in athlete recovery. J Sports Psychol Well-being. 2023;12(2):115-130.
  • 9. Patel SR, Kumar V. Personalizing nutrition for athletic recovery: A tailored approach. Int J Sports Nutr Exerc Metab. 2024;34(1):58-72.
  • 10. Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012;590(5):1049-1057.
  • 11. West DW, Burd NA, Coffey VG, et al. Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am J Clin Nutr. 2011;94(3):795-803.
  • 12. Morton RW, Murphy KT, McKellar SR, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376-384.
  • 13. Witard OC, Jackman SR, Breen L, et al. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99(1):86-95.
  • 14. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol (1985). 2009;107(3):987-992.
  • 15. Martinez Galan BS, Giolo De Carvalho F, Carvalho SCS, et al. Casein and Whey Protein in the Breast Milk Ratio: Could It Promote Protein Metabolism Enhancement in Physically Active Adults? Nutrients. 2021;13(7):2153.
  • 16. Nieman DC, Zwetsloot KA, Simonson AJ, et al. Effects of Whey and Pea Protein Supplementation on Post-Eccentric Exercise Muscle Damage: A Randomized Trial. Nutrients. 2020;12(8):2382.
  • 17. Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501-528.
  • 18. Moore DR, Robinson MJ, Fry JL, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161-168.
  • 19. Saracino PG, Saylor HE, Hanna BR, Hickner RC, Kim JS, Ormsbee MJ. Effects of Pre-Sleep Whey vs. Plant-Based Protein Consumption on Muscle Recovery Following Damaging Morning Exercise. Nutrients. 2020;12(7):2049.
  • 20. Wu G, Thompson JR. The effect of glutamine on protein turnover in chick skeletal muscle in vitro. Biochem J. 1990;265(2):593-598.
  • 21. Legault Z, Bagnall N, Kimmerly DS. The Influence of Oral L-Glutamine Supplementation on Muscle Strength Recovery and Soreness Following Unilateral Knee Extension Eccentric Exercise. Int J Sport Nutr Exerc Metab. 2015;25(5):417-426.
  • 22. Street B, Byrne C, Eston R. Glutamine supplementation in recovery from eccentric exercise attenuates strength loss and muscle soreness. J Exerc Sci Fit. 2011;9(2):116-122.
  • 23. Caballero-García A, Córdova-Martínez A. Muscle Recovery and Nutrition. Nutrients. 2022;14(12):2416.
  • 24. Liao Y, Weber D, Xu W, et al. Absolute quantification of human milk caseins and the whey/casein ratio during the first year of lactation. J Proteome Res. 2017;16(11):4113-4121.
  • 25. McMahon G, Thornbury A. Ingestion of Carbohydrate Prior to and during Maximal, Sprint Interval Cycling Has No Ergogenic Effect: A Randomized, Double-Blind, Placebo Controlled, Crossover Study. Nutrients. 2020;12(8):2223.
  • 26. Urdampilleta A, Arribalzaga S, Viribay A, et al. Effects of 120 vs. 60 and 90 g/h Carbohydrate Intake during a Trail Marathon on Neuromuscular Function and High Intensity Run Capacity Recovery. Nutrients. 2020;12(7):2094.
  • 27. Viribay A, Arribalzaga S, Mielgo-Ayuso J, et al. Effects of 120 g/h of Carbohydrates Intake during a Mountain Marathon on Exercise-Induced Muscle Damage in Elite Runners. Nutrients. 2020;12(5):1367.
  • 28. Jeukendrup AE. Periodized Nutrition for Athletes. Sports Med. 2017;47(S1):51-63.
  • 29. Stellingwerff T, Cox GR. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab. 2014;39(9):998-1011.
  • 30. Dunford M, Doyle JA. Water and electrolytes. In: Nutrition for Sport and Exercise. 3rd ed. China: CENGAGE Learning; 2015:240-253.
  • 31. Gil-Antuñano NP, Zenarruzabeitia ZM, Camacho AMR. Food, nutrition and hydration in sports. Consejo Superior de Deportes. 2009.
  • 32. Popkin BM, D'Anci KE, Rosenberg IH. Water, hydration, and health. Nutr Rev. 2010;68(8):439-458.
  • 33. Von Duvillard SP, Braun WA, Markofski M, Beneke R, Leithäuser R. Fluids and hydration in prolonged endurance performance. Nutrition. 2004;20(7-8):651-656.
  • 34. Sawka MN, Burke LM. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377-390.
  • 35. Coyle EF. Fluid and fuel intake during exercise. J Sports Sci. 2004;22(1):39-55.
  • 36. Casa DJ, Armstrong LE, Hillman SK, et al. National athletic trainers' association position statement: fluid replacement for athletes. J Athl Train. 2000;35(2):212.
  • 37. American College of Sports Medicine (ACSM). Selecting and effectively using hydration for fitness. Available from: http://www.acsm.org/. Accessed September 9, 2017.
  • 38. Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta. 1995;1271(1):195-204.
  • 39. Bhagavan HN, Chopra RK. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion. 2007;7:S78-S88.
  • 40. Williamson J, Davison G. Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA Damage. Antioxidants. 2020;9(11):1142.
  • 41. Forsmark-Andree P, Ernster L. Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondrial protein and DNA during lipid peroxidation. Mol Aspects Med. 1994;15:S73-S81.
  • 42. López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, Navas P. Is coenzyme Q a key factor in aging?. Mech Ageing Dev. 2010;131(4):225-235.
  • 43. Crane FL, Sun IL, Sun EE. The essential functions of coenzyme Q. Clin Investig. 1993;71(8 Suppl):S55-S59.
  • 44. Ho CC, Chang PS, Chen HW, et al. Ubiquinone Supplementation with 300 mg on Glycemic Control and Antioxidant Status in Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial. Antioxidants. 2020;9(9):823.
  • 45. Diaz-Castro J, Moreno-Fernandez J, Chirosa I, et al. Beneficial Effect of Ubiquinol on Hematological and Inflammatory Signaling during Exercise. Nutrients. 2020;12(2):424.
  • 46. Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: Recent developments. Mol Biotechnol. 2007;37(1):31-37.
  • 47. Siebrecht S, Chan DYL, Rosenfeld F, Lin KW. Coenzyme Q10 and ubiquinol for physical performance. In: Hargreaves I, ed. Coenzyme Q10: From Fact to Fiction. 2015.
  • 48. Steele PE, Tang PH, DeGrauw AJ, Miles MV. Clinical laboratory monitoring of coenzyme Q10 use in neurologic and muscular diseases. Am J Clin Pathol. 2004;121 Suppl:S113-S120.
  • 49. Littarru GP, Battino M, Tomasetti M, et al. Metabolic implications of coenzyme Q10 in red blood cells and plasma lipoproteins. Mol Aspects Med. 1994;15:S67-S72.
  • 50. Shinozawa S, Araki Y, Oda T. Stabilizing effects of coenzyme Q10 on potassium ion release, membrane potential and fluidity of rabbit red blood cells. Acta Med Okayama. 1980;34(4):255-261.
  • 51. Wani MR, Shadab GHA. Coenzyme Q10 protects isolated human blood cells from TiO2 nanoparticles induced oxidative/antioxidative imbalance, hemolysis, cytotoxicity, DNA damage and mitochondrial impairment. Mol Biol Rep. 2021;48(4):3367-3377.
  • 52. Gao JJ, Xu YX, Jia HP, et al. Associations of coenzyme Q10 with endothelial function in hemodialysis patients. Nephrology (Carlton). 2021;26(1):54-61.
  • 53. Huo J, Xu Z, Hosoe K, et al. Coenzyme Q10 prevents senescence and dysfunction caused by oxidative stress in vascular endothelial cells. Oxid Med Cell Longev. 2018;2018:
  • 54. Sarmiento A, Diaz-Castro J, Pulido-Moran M, et al. Coenzyme Q10: The missing link in endurance exercise adaptation. Biochim Biophys Acta. 2016;1862(2):109-121.
  • 55. Crane, F. L. Biochemical functions of coenzyme Q10. Journal of the American College of Nutrition. 2001;20(6):591-598.
  • 56. Littarru, G. P., Tiano, L. Bioenergetic and antioxidant properties of coenzyme Q10: Recent developments. Molecular Biotechnology. 2007;37(1):31-37.
  • 57. Hodgson, J. M., Watts, G. F., Playford, D. A., Burke, V., Croft, K. D. Coenzyme Q10 improves blood pressure and glycaemic control: A controlled trial in subjects with type 2 diabetes. European Journal of Clinical Nutrition. 2002;56(11):1137-1142.
  • 58. Shimomura Y, Yamamoto Y, Bajotto G, et al. Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr. 2010;140(2):242S-248S.
  • 59. Kreider RB, Kalman DS, Antonio J, et al. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14:18.
  • 60. Mickleborough TD. Omega-3 polyunsaturated fatty acids in physical performance optimization. Int J Sport Nutr Exerc Metab. 2013;23(1):83-96.

Beslenme Yoluyla Performansı Artırma: Kas İyileştirme Stratejileri

Year 2024, Volume: 14 Issue: 5, 273 - 279, 25.09.2024

Abstract

Kas iyileşmesi ve beslenme, sporcuların performansını artırmak, sağlıklı bir vücut yapısına sahip olmak ve iyileşme sürecini hızlandırmak açısından önemli bir rol oynar. Uygun beslenme alışkanlıkları sayesinde, kas onarımı ve büyümesi için gerekli olan proteinler, karbonhidratlar, yağlar ve diğer besin öğeleri vücuda sağlanır. Bu öğeler, kasların iyileşmesi ve güçlenmesi için kritik öneme sahiptir. Etkili bir beslenme stratejisi, sporcuların performansını artırırken yaralanma riskini azaltabilir ve genel sağlığı iyileştirebilir. Performans artırıcı ürünler, yorgunluğu azaltma, iyileşmeyi hızlandırma ve hatta iradeyi etkileme gibi çeşitli etkileri nedeniyle eski zamanlardan beri kullanılmaktadır. Sporcuların performansının yanı sıra genel sağlığın korunması için sıvı dengesinin sağlanması ve dehidratasyonun önlenmesi de büyük önem taşır. Özellikle bazı spor branşlarında sıvı ve elektrolit alımı ile birlikte karbonhidrat alımı, besinlerin vücutta taşınması ve metabolize olmasını kolaylaştırır. Son yıllarda, hücre bioenerjetiği ve redoks reaksiyonlarında önemli bir rol oynayan ve aynı zamanda güçlü bir antioksidan olan Koenzim Q10 takviyesinin, spor sonrası kas dokusundaki iyileşme üzerine etkisi giderek daha fazla ilgi çekmektedir. Bu alanda takviye kullanımının potansiyel faydaları ilgi çekici olmakla birlikte, daha fazla araştırmaya ihtiyaç duyulmaktadır.

References

  • 1. Maughan R. Dietary Supplements and the High-Performance Athlete. Int J Sport Nutr Exerc Metab. 2018;28:101.
  • 2. Drobnic F, Lizarraga MA, Caballero-García A, Cordova A. Coenzyme Q10 Supplementation and Its Impact on Exercise and Sport Performance in Humans: A Recovery or a Performance-Enhancing Molecule? Nutrients. 2022;14:1811.
  • 3. Sousa M, Teixeira VH, Soares J. Dietary strategies to recover from exercise-induced muscle damage. Int J Food Sci Nutr. 2013;65:151-163.
  • 4. Mielgo-Ayuso J, Fernández-Lázaro D. Nutrition and Muscle Recovery. Nutrients. 2021;13:294.
  • 5. Córdova-Martínez A, Caballero-García A, Bello HJ, Pérez-Valdecantos D, Roche E. Effect of Glutamine Supplementation on Muscular Damage Biomarkers in Professional Basketball Players. Nutrients. 2021;13(6):2073.
  • 6. Caballero-García A, Córdova-Martínez A. Muscle Recovery and Nutrition. Nutrients. 2022;14:2416.
  • 7. Mielgo-Ayuso J, Fernández-Lázaro D. Nutrition and Muscle Recovery. Nutrients. 2021 Jan 20;13(2):294.
  • 8. Smith JL, Brown HA. Psychological resilience and stress management in athlete recovery. J Sports Psychol Well-being. 2023;12(2):115-130.
  • 9. Patel SR, Kumar V. Personalizing nutrition for athletic recovery: A tailored approach. Int J Sports Nutr Exerc Metab. 2024;34(1):58-72.
  • 10. Atherton PJ, Smith K. Muscle protein synthesis in response to nutrition and exercise. J Physiol. 2012;590(5):1049-1057.
  • 11. West DW, Burd NA, Coffey VG, et al. Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am J Clin Nutr. 2011;94(3):795-803.
  • 12. Morton RW, Murphy KT, McKellar SR, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376-384.
  • 13. Witard OC, Jackman SR, Breen L, et al. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99(1):86-95.
  • 14. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol (1985). 2009;107(3):987-992.
  • 15. Martinez Galan BS, Giolo De Carvalho F, Carvalho SCS, et al. Casein and Whey Protein in the Breast Milk Ratio: Could It Promote Protein Metabolism Enhancement in Physically Active Adults? Nutrients. 2021;13(7):2153.
  • 16. Nieman DC, Zwetsloot KA, Simonson AJ, et al. Effects of Whey and Pea Protein Supplementation on Post-Eccentric Exercise Muscle Damage: A Randomized Trial. Nutrients. 2020;12(8):2382.
  • 17. Thomas DT, Erdman KA, Burke LM. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J Acad Nutr Diet. 2016;116(3):501-528.
  • 18. Moore DR, Robinson MJ, Fry JL, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161-168.
  • 19. Saracino PG, Saylor HE, Hanna BR, Hickner RC, Kim JS, Ormsbee MJ. Effects of Pre-Sleep Whey vs. Plant-Based Protein Consumption on Muscle Recovery Following Damaging Morning Exercise. Nutrients. 2020;12(7):2049.
  • 20. Wu G, Thompson JR. The effect of glutamine on protein turnover in chick skeletal muscle in vitro. Biochem J. 1990;265(2):593-598.
  • 21. Legault Z, Bagnall N, Kimmerly DS. The Influence of Oral L-Glutamine Supplementation on Muscle Strength Recovery and Soreness Following Unilateral Knee Extension Eccentric Exercise. Int J Sport Nutr Exerc Metab. 2015;25(5):417-426.
  • 22. Street B, Byrne C, Eston R. Glutamine supplementation in recovery from eccentric exercise attenuates strength loss and muscle soreness. J Exerc Sci Fit. 2011;9(2):116-122.
  • 23. Caballero-García A, Córdova-Martínez A. Muscle Recovery and Nutrition. Nutrients. 2022;14(12):2416.
  • 24. Liao Y, Weber D, Xu W, et al. Absolute quantification of human milk caseins and the whey/casein ratio during the first year of lactation. J Proteome Res. 2017;16(11):4113-4121.
  • 25. McMahon G, Thornbury A. Ingestion of Carbohydrate Prior to and during Maximal, Sprint Interval Cycling Has No Ergogenic Effect: A Randomized, Double-Blind, Placebo Controlled, Crossover Study. Nutrients. 2020;12(8):2223.
  • 26. Urdampilleta A, Arribalzaga S, Viribay A, et al. Effects of 120 vs. 60 and 90 g/h Carbohydrate Intake during a Trail Marathon on Neuromuscular Function and High Intensity Run Capacity Recovery. Nutrients. 2020;12(7):2094.
  • 27. Viribay A, Arribalzaga S, Mielgo-Ayuso J, et al. Effects of 120 g/h of Carbohydrates Intake during a Mountain Marathon on Exercise-Induced Muscle Damage in Elite Runners. Nutrients. 2020;12(5):1367.
  • 28. Jeukendrup AE. Periodized Nutrition for Athletes. Sports Med. 2017;47(S1):51-63.
  • 29. Stellingwerff T, Cox GR. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab. 2014;39(9):998-1011.
  • 30. Dunford M, Doyle JA. Water and electrolytes. In: Nutrition for Sport and Exercise. 3rd ed. China: CENGAGE Learning; 2015:240-253.
  • 31. Gil-Antuñano NP, Zenarruzabeitia ZM, Camacho AMR. Food, nutrition and hydration in sports. Consejo Superior de Deportes. 2009.
  • 32. Popkin BM, D'Anci KE, Rosenberg IH. Water, hydration, and health. Nutr Rev. 2010;68(8):439-458.
  • 33. Von Duvillard SP, Braun WA, Markofski M, Beneke R, Leithäuser R. Fluids and hydration in prolonged endurance performance. Nutrition. 2004;20(7-8):651-656.
  • 34. Sawka MN, Burke LM. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377-390.
  • 35. Coyle EF. Fluid and fuel intake during exercise. J Sports Sci. 2004;22(1):39-55.
  • 36. Casa DJ, Armstrong LE, Hillman SK, et al. National athletic trainers' association position statement: fluid replacement for athletes. J Athl Train. 2000;35(2):212.
  • 37. American College of Sports Medicine (ACSM). Selecting and effectively using hydration for fitness. Available from: http://www.acsm.org/. Accessed September 9, 2017.
  • 38. Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta. 1995;1271(1):195-204.
  • 39. Bhagavan HN, Chopra RK. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion. 2007;7:S78-S88.
  • 40. Williamson J, Davison G. Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA Damage. Antioxidants. 2020;9(11):1142.
  • 41. Forsmark-Andree P, Ernster L. Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondrial protein and DNA during lipid peroxidation. Mol Aspects Med. 1994;15:S73-S81.
  • 42. López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, Navas P. Is coenzyme Q a key factor in aging?. Mech Ageing Dev. 2010;131(4):225-235.
  • 43. Crane FL, Sun IL, Sun EE. The essential functions of coenzyme Q. Clin Investig. 1993;71(8 Suppl):S55-S59.
  • 44. Ho CC, Chang PS, Chen HW, et al. Ubiquinone Supplementation with 300 mg on Glycemic Control and Antioxidant Status in Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial. Antioxidants. 2020;9(9):823.
  • 45. Diaz-Castro J, Moreno-Fernandez J, Chirosa I, et al. Beneficial Effect of Ubiquinol on Hematological and Inflammatory Signaling during Exercise. Nutrients. 2020;12(2):424.
  • 46. Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: Recent developments. Mol Biotechnol. 2007;37(1):31-37.
  • 47. Siebrecht S, Chan DYL, Rosenfeld F, Lin KW. Coenzyme Q10 and ubiquinol for physical performance. In: Hargreaves I, ed. Coenzyme Q10: From Fact to Fiction. 2015.
  • 48. Steele PE, Tang PH, DeGrauw AJ, Miles MV. Clinical laboratory monitoring of coenzyme Q10 use in neurologic and muscular diseases. Am J Clin Pathol. 2004;121 Suppl:S113-S120.
  • 49. Littarru GP, Battino M, Tomasetti M, et al. Metabolic implications of coenzyme Q10 in red blood cells and plasma lipoproteins. Mol Aspects Med. 1994;15:S67-S72.
  • 50. Shinozawa S, Araki Y, Oda T. Stabilizing effects of coenzyme Q10 on potassium ion release, membrane potential and fluidity of rabbit red blood cells. Acta Med Okayama. 1980;34(4):255-261.
  • 51. Wani MR, Shadab GHA. Coenzyme Q10 protects isolated human blood cells from TiO2 nanoparticles induced oxidative/antioxidative imbalance, hemolysis, cytotoxicity, DNA damage and mitochondrial impairment. Mol Biol Rep. 2021;48(4):3367-3377.
  • 52. Gao JJ, Xu YX, Jia HP, et al. Associations of coenzyme Q10 with endothelial function in hemodialysis patients. Nephrology (Carlton). 2021;26(1):54-61.
  • 53. Huo J, Xu Z, Hosoe K, et al. Coenzyme Q10 prevents senescence and dysfunction caused by oxidative stress in vascular endothelial cells. Oxid Med Cell Longev. 2018;2018:
  • 54. Sarmiento A, Diaz-Castro J, Pulido-Moran M, et al. Coenzyme Q10: The missing link in endurance exercise adaptation. Biochim Biophys Acta. 2016;1862(2):109-121.
  • 55. Crane, F. L. Biochemical functions of coenzyme Q10. Journal of the American College of Nutrition. 2001;20(6):591-598.
  • 56. Littarru, G. P., Tiano, L. Bioenergetic and antioxidant properties of coenzyme Q10: Recent developments. Molecular Biotechnology. 2007;37(1):31-37.
  • 57. Hodgson, J. M., Watts, G. F., Playford, D. A., Burke, V., Croft, K. D. Coenzyme Q10 improves blood pressure and glycaemic control: A controlled trial in subjects with type 2 diabetes. European Journal of Clinical Nutrition. 2002;56(11):1137-1142.
  • 58. Shimomura Y, Yamamoto Y, Bajotto G, et al. Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr. 2010;140(2):242S-248S.
  • 59. Kreider RB, Kalman DS, Antonio J, et al. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14:18.
  • 60. Mickleborough TD. Omega-3 polyunsaturated fatty acids in physical performance optimization. Int J Sport Nutr Exerc Metab. 2013;23(1):83-96.
There are 60 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Review
Authors

Enes Kara 0000-0001-8784-1133

Şevval Işıklı 0009-0002-2659-7928

Early Pub Date August 27, 2024
Publication Date September 25, 2024
Submission Date May 18, 2024
Acceptance Date July 12, 2024
Published in Issue Year 2024 Volume: 14 Issue: 5

Cite

AMA Kara E, Işıklı Ş. Improving Performance Through Nutrition: Muscle Recovery Strategies. J Contemp Med. September 2024;14(5):273-279.