Research Article
BibTex RIS Cite

Empagliflozin modulates seizure activity and oxidative stress in rats with epilepsy

Year 2024, , 1195 - 1204, 17.10.2024
https://doi.org/10.37212/jcnos.1479756

Abstract

Drug-resistant epilepsy, a commonly devastating condition, affects more than 50 million people globally. Type 2 diabetes mellitus (T2DM) is associated with an increased risk of neurological disorders, and a potential association between epilepsy and subsequent T2DM has emerged. Inhibiting sodium-glucose linked transporters (SGLTs), which are differentially expressed in the brain, has been shown to reduce epileptic episode activity. This study aimed to evaluate the anticonvulsive effect of empagliflozin in rats with seizures induced by maximal electric shock (MES) and pentylenetetrazol (PTZ). Generalized tonic‒clonic seizures were induced in the rats using an electroconvulsive meter, and pentylenetetrazol was injected to induce absence seizures. The duration of all the stages of seizure and Racine stage scoring (RSS) were performed. Malondialdehyde (MDA), nitric oxide (NO) and reduced glutathione (GSH) levels in the brain tissues were determined. Histopathological analysis of the brain tissues was carried out. A significant (p <0.01) decrease in the duration of tonic hind limb extension (THLE), a significant decrease in the levels of pro-oxidants such as MDA and NO, and an increase in the levels of antioxidants such as GSH were observed in the low dose 10 mg/kg and high dose 20 mg/kg empagliflozin groups compared to the disease control group. Histopathological analysis revealed a greater number of healthy neurons with few dark-stained cells in the treatment groups, suggesting the neuroprotective effect of empagliflozin. The present study showed that empagliflozin modulates epileptic activity. Empagliflozin has a potential role in the management of epilepsy in diabetic patients.

Ethical Statement

The study was carried out in accordance with the rules set forth by the Committee for Control and Supervision of Experimentation on Animals (CCSEA), and the protocol was authorized (IAEC/KMC/65/2021) by the Institutional Animal Ethics Committee.

Supporting Institution

Nil

References

  • Abd El-Fattah EE, Saber S, Mourad AAE, et al. (2022). The dynamic interplay between AMPK/NFκB signaling and NLRP3 is a new therapeutic target in inflammation: Emerging role of dapagliflozin in overcoming lipopolysaccharide-mediated lung injury. Biomed Pharmacother. 147:112628. doi: 10.1016/j.biopha.2022.112628.
  • Alachkar A, Łażewska D, Latacz G, et al. (2018). Studies on Anticonvulsant effects of Novel Histamine H3R Antagonists in Electrically and Chemically Induced Seizures in Rats. Int J Mol Sci.19(11):3386. doi:10.3390/ijms19113386
  • Beutler E, Duron O, Kelly BM. (1963). Improved method for the determination of blood glutathione. J Lab Clin Med. 61:882-888. PMID: 13967893.
  • Blunck JR, Newman JW, Fields RK, Croom JE. (2018) Therapeutic augmentation of ketogenic diet with a sodium-glucose cotransporter 2 inhibitor in a super refractory status epilepticus patient. Epilepsy Behav Case Rep. 10:61-64. doi: 10.1016/j.ebcr.2018.05.002.
  • D'Andrea Meira I, Romão TT, Pires do Prado HJ, Krüger LT, Pires MEP, da Conceição PO. (2019). Ketogenic Diet and Epilepsy: What We Know So Far. Front Neurosci. 13:5. doi:10.3389/fnins.2019.00005.
  • Doğan M & Yildizhan K. (2021). Investigation of the effect of paracetamol against on glutamate-induced cytotoxicity in C6 glia cells. Cumhuriyet Science Journal. 42(4), 789-794
  • Erdogan MA, Yusuf D, Christy J, et al. (2018). Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol. 18(1):81. doi:10.1186/s12883-018-1086-4.
  • Frantseva MV, Perez Velazquez JL, Tsoraklidis G, et al. (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience. 97(3):431-435. doi:10.1016/s0306-4522(00)00041-5.
  • Garcia YJ, Rodríguez-Malaver AJ, Peñaloza N. (2005). Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. J Neurosci Methods.144(1):127-135. doi: 10.1016/j.jneumeth.2004.10.018.
  • Guisado R, Arieff AI. (1975). Neurologic manifestations of diabetic comas: correlation with biochemical alterations in the brain. Metabolism. 24(5):665-679. doi:10.1016/0026-0495(75)90146-8.
  • Hassanein, Emad H M et al. (2023). Neuroprotective effect of canagliflozin against cisplatin-induced cerebral cortex injury is mediated by regulation of HO-1/PPAR-γ, SIRT1/FOXO-3, JNK/AP-1, TLR4/iNOS, and Ang II/Ang 1-7 signals. Immunopharmacol Immunotoxicol . 45(3): 304-316. doi:10.1080/08923973.2022.2143371.
  • Huang CW, Huang CC, Cheng JT, Tsai JJ, Wu SN. (2007). Glucose and hippocampal neuronal excitability: role of ATP-sensitive potassium channels. J Neurosci Res. 85(7):1468-1477. doi:10.1002/jnr.21284.
  • Lee DU, Kang YJ, Park MK, et al. (2003). Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-alpha, iNOS, and IL-12 production in LPS-stimulated macrophages. Life Sci. 73(11):1401-1412. doi:10.1016/s0024-3205(03)00435-1.
  • Levine MJ. (2017). Empagliflozin for Type 2 Diabetes Mellitus: An Overview of Phase 3 Clinical Trials. Curr Diabetes Rev. 13(4):405-423. doi:10.2174/1573399812666160613113556.
  • Lu CL, Chang YH, Sun Y, Li CY. (2018). A population-based study of epilepsy incidence in association with type 2 diabetes and severe hypoglycaemia. Diabetes Res Clin Pract. 140:97-106. doi: 10.1016/j.diabres.2018.03.020.
  • Lüttjohann A, Fabene PF, van Luijtelaar G. (2009). A revised Racine's scale for PTZ-induced seizures in rats. Physiol Behav. 98(5):579-586. doi: 10.1016/j.physbeh.2009.09.005.
  • Melo IS, Santos YMO, Costa MA, et al. (2016). Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus. Epilepsy Behav. 61:258-268. doi: 10.1016/j.yebeh.2016.05.026.
  • Nadeem M, Memon S, Qureshi K, et al. (2023) Seizing the Connection: Exploring the Interplay Between Epilepsy and Glycemic Control in Diabetes Management. Cureus 15(9): e45606. doi:10.7759/cureus.45606
  • Neal EG, Chaffe H, Schwartz RH, et al. (2008). The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 7(6):500-506. doi:10.1016/S1474-4422(08)70092-9.
  • Poppe R, Karbach U, Gambaryan S, et al. (1997). Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. J Neurochem.69(1):84-94. doi:10.1046/j.1471-4159.1997.69010084. x.
  • Rovet JF, Ehrlich RM. (1999). The effect of hypoglycemic seizures on cognitive function in children with diabetes: a 7-year prospective study. J Pediatr. 134(4):503-506. doi:10.1016/s0022-3476(99)70211-8.
  • Sander JW, Novy J, Keezer MR. (2016). The intriguing relationship between epilepsy and type 1 diabetes mellitus. Diabetologia. 59(7):1569-1570. doi:10.1007/s00125-016-3982-8
  • Sarangi SC, Joshi D, Kumar R, Kaleekal T, Gupta YK. (2017). Pharmacokinetic and pharmacodynamic interaction of hydroalcoholic extract of Ocimum sanctum with valproate. Epilepsy Behav.75:203-209. doi: 10.1016/j.yebeh.2017.08.018.
  • Senthilkumar M, Amaresan N, Sankaranarayanan. 2021. Plant-Microbe Interactions: Laboratory Techniques, Springer Protocols Handbooks, https://doi.org/10.1007/978-1-0716-1080-0_25, © Springer Science+Business Media, LLC, part of Springer Nature
  • Smiałowska M, Wierońska JM, Szewczyk B. (2003). Neuroprotective effect of NPY on kainate neurotoxicity in the hippocampus. Pol J Pharmacol. 55(6):979-986. PMID: 14730092.
  • Sudha K, Rao AV, Rao A.(2001). Oxidative stress and antioxidants in epilepsy. Clin Chim Acta.303(1-2):19-24. doi:10.1016/s0009-8981(00)00337-5.
  • Tharmaraja T, Ho JSY, Sia CH, et al. (2022). Sodium-glucose cotransporter 2 inhibitors and neurological disorders: a scoping review. Ther Adv Chronic Dis. 13:20406223221086996. doi:10.1177/20406223221086996.
  • Thijs RD, Surges R, O'Brien TJ, Sander JW.(2019). Epilepsy in adults. Lancet. 393(10172):689-701. doi: 10.1016/S0140-6736(18)32596-0.. PMID: 30686584.3.
  • Tsai KF, Chen YL, Chiou TT, et al. (2021). Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxidants (Basel). 10(8):1166. doi:10.3390/antiox10081166.
  • Wiciński M, Wódkiewicz E, Górski K, Walczak M, Malinowski B. (2020). Perspective of SGLT2 Inhibition in Treatment of Conditions Connected to Neuronal Loss: Focus on Alzheimer's Disease and Ischemia-Related Brain Injury. Pharmaceuticals (Basel). 13(11):379. doi:10.3390/ph13110379.
Year 2024, , 1195 - 1204, 17.10.2024
https://doi.org/10.37212/jcnos.1479756

Abstract

References

  • Abd El-Fattah EE, Saber S, Mourad AAE, et al. (2022). The dynamic interplay between AMPK/NFκB signaling and NLRP3 is a new therapeutic target in inflammation: Emerging role of dapagliflozin in overcoming lipopolysaccharide-mediated lung injury. Biomed Pharmacother. 147:112628. doi: 10.1016/j.biopha.2022.112628.
  • Alachkar A, Łażewska D, Latacz G, et al. (2018). Studies on Anticonvulsant effects of Novel Histamine H3R Antagonists in Electrically and Chemically Induced Seizures in Rats. Int J Mol Sci.19(11):3386. doi:10.3390/ijms19113386
  • Beutler E, Duron O, Kelly BM. (1963). Improved method for the determination of blood glutathione. J Lab Clin Med. 61:882-888. PMID: 13967893.
  • Blunck JR, Newman JW, Fields RK, Croom JE. (2018) Therapeutic augmentation of ketogenic diet with a sodium-glucose cotransporter 2 inhibitor in a super refractory status epilepticus patient. Epilepsy Behav Case Rep. 10:61-64. doi: 10.1016/j.ebcr.2018.05.002.
  • D'Andrea Meira I, Romão TT, Pires do Prado HJ, Krüger LT, Pires MEP, da Conceição PO. (2019). Ketogenic Diet and Epilepsy: What We Know So Far. Front Neurosci. 13:5. doi:10.3389/fnins.2019.00005.
  • Doğan M & Yildizhan K. (2021). Investigation of the effect of paracetamol against on glutamate-induced cytotoxicity in C6 glia cells. Cumhuriyet Science Journal. 42(4), 789-794
  • Erdogan MA, Yusuf D, Christy J, et al. (2018). Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol. 18(1):81. doi:10.1186/s12883-018-1086-4.
  • Frantseva MV, Perez Velazquez JL, Tsoraklidis G, et al. (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience. 97(3):431-435. doi:10.1016/s0306-4522(00)00041-5.
  • Garcia YJ, Rodríguez-Malaver AJ, Peñaloza N. (2005). Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. J Neurosci Methods.144(1):127-135. doi: 10.1016/j.jneumeth.2004.10.018.
  • Guisado R, Arieff AI. (1975). Neurologic manifestations of diabetic comas: correlation with biochemical alterations in the brain. Metabolism. 24(5):665-679. doi:10.1016/0026-0495(75)90146-8.
  • Hassanein, Emad H M et al. (2023). Neuroprotective effect of canagliflozin against cisplatin-induced cerebral cortex injury is mediated by regulation of HO-1/PPAR-γ, SIRT1/FOXO-3, JNK/AP-1, TLR4/iNOS, and Ang II/Ang 1-7 signals. Immunopharmacol Immunotoxicol . 45(3): 304-316. doi:10.1080/08923973.2022.2143371.
  • Huang CW, Huang CC, Cheng JT, Tsai JJ, Wu SN. (2007). Glucose and hippocampal neuronal excitability: role of ATP-sensitive potassium channels. J Neurosci Res. 85(7):1468-1477. doi:10.1002/jnr.21284.
  • Lee DU, Kang YJ, Park MK, et al. (2003). Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-alpha, iNOS, and IL-12 production in LPS-stimulated macrophages. Life Sci. 73(11):1401-1412. doi:10.1016/s0024-3205(03)00435-1.
  • Levine MJ. (2017). Empagliflozin for Type 2 Diabetes Mellitus: An Overview of Phase 3 Clinical Trials. Curr Diabetes Rev. 13(4):405-423. doi:10.2174/1573399812666160613113556.
  • Lu CL, Chang YH, Sun Y, Li CY. (2018). A population-based study of epilepsy incidence in association with type 2 diabetes and severe hypoglycaemia. Diabetes Res Clin Pract. 140:97-106. doi: 10.1016/j.diabres.2018.03.020.
  • Lüttjohann A, Fabene PF, van Luijtelaar G. (2009). A revised Racine's scale for PTZ-induced seizures in rats. Physiol Behav. 98(5):579-586. doi: 10.1016/j.physbeh.2009.09.005.
  • Melo IS, Santos YMO, Costa MA, et al. (2016). Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus. Epilepsy Behav. 61:258-268. doi: 10.1016/j.yebeh.2016.05.026.
  • Nadeem M, Memon S, Qureshi K, et al. (2023) Seizing the Connection: Exploring the Interplay Between Epilepsy and Glycemic Control in Diabetes Management. Cureus 15(9): e45606. doi:10.7759/cureus.45606
  • Neal EG, Chaffe H, Schwartz RH, et al. (2008). The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 7(6):500-506. doi:10.1016/S1474-4422(08)70092-9.
  • Poppe R, Karbach U, Gambaryan S, et al. (1997). Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. J Neurochem.69(1):84-94. doi:10.1046/j.1471-4159.1997.69010084. x.
  • Rovet JF, Ehrlich RM. (1999). The effect of hypoglycemic seizures on cognitive function in children with diabetes: a 7-year prospective study. J Pediatr. 134(4):503-506. doi:10.1016/s0022-3476(99)70211-8.
  • Sander JW, Novy J, Keezer MR. (2016). The intriguing relationship between epilepsy and type 1 diabetes mellitus. Diabetologia. 59(7):1569-1570. doi:10.1007/s00125-016-3982-8
  • Sarangi SC, Joshi D, Kumar R, Kaleekal T, Gupta YK. (2017). Pharmacokinetic and pharmacodynamic interaction of hydroalcoholic extract of Ocimum sanctum with valproate. Epilepsy Behav.75:203-209. doi: 10.1016/j.yebeh.2017.08.018.
  • Senthilkumar M, Amaresan N, Sankaranarayanan. 2021. Plant-Microbe Interactions: Laboratory Techniques, Springer Protocols Handbooks, https://doi.org/10.1007/978-1-0716-1080-0_25, © Springer Science+Business Media, LLC, part of Springer Nature
  • Smiałowska M, Wierońska JM, Szewczyk B. (2003). Neuroprotective effect of NPY on kainate neurotoxicity in the hippocampus. Pol J Pharmacol. 55(6):979-986. PMID: 14730092.
  • Sudha K, Rao AV, Rao A.(2001). Oxidative stress and antioxidants in epilepsy. Clin Chim Acta.303(1-2):19-24. doi:10.1016/s0009-8981(00)00337-5.
  • Tharmaraja T, Ho JSY, Sia CH, et al. (2022). Sodium-glucose cotransporter 2 inhibitors and neurological disorders: a scoping review. Ther Adv Chronic Dis. 13:20406223221086996. doi:10.1177/20406223221086996.
  • Thijs RD, Surges R, O'Brien TJ, Sander JW.(2019). Epilepsy in adults. Lancet. 393(10172):689-701. doi: 10.1016/S0140-6736(18)32596-0.. PMID: 30686584.3.
  • Tsai KF, Chen YL, Chiou TT, et al. (2021). Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxidants (Basel). 10(8):1166. doi:10.3390/antiox10081166.
  • Wiciński M, Wódkiewicz E, Górski K, Walczak M, Malinowski B. (2020). Perspective of SGLT2 Inhibition in Treatment of Conditions Connected to Neuronal Loss: Focus on Alzheimer's Disease and Ischemia-Related Brain Injury. Pharmaceuticals (Basel). 13(11):379. doi:10.3390/ph13110379.
There are 30 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other), Neurosciences (Other)
Journal Section Original Articles
Authors

Neha Holla

Shalini Adiga 0000-0002-3369-194X

Meena Kumari

Mohandas Rao Kapettu Gadahad

Prameetha Naik

Publication Date October 17, 2024
Submission Date May 9, 2024
Acceptance Date August 7, 2024
Published in Issue Year 2024

Cite

APA Holla, N., Adiga, S., Kumari, M., Rao Kapettu Gadahad, M., et al. (2024). Empagliflozin modulates seizure activity and oxidative stress in rats with epilepsy. Journal of Cellular Neuroscience and Oxidative Stress, 16(2), 1195-1204. https://doi.org/10.37212/jcnos.1479756
AMA Holla N, Adiga S, Kumari M, Rao Kapettu Gadahad M, Naik P. Empagliflozin modulates seizure activity and oxidative stress in rats with epilepsy. J Cell Neurosci Oxid Stress. October 2024;16(2):1195-1204. doi:10.37212/jcnos.1479756
Chicago Holla, Neha, Shalini Adiga, Meena Kumari, Mohandas Rao Kapettu Gadahad, and Prameetha Naik. “Empagliflozin Modulates Seizure Activity and Oxidative Stress in Rats With Epilepsy”. Journal of Cellular Neuroscience and Oxidative Stress 16, no. 2 (October 2024): 1195-1204. https://doi.org/10.37212/jcnos.1479756.
EndNote Holla N, Adiga S, Kumari M, Rao Kapettu Gadahad M, Naik P (October 1, 2024) Empagliflozin modulates seizure activity and oxidative stress in rats with epilepsy. Journal of Cellular Neuroscience and Oxidative Stress 16 2 1195–1204.
IEEE N. Holla, S. Adiga, M. Kumari, M. Rao Kapettu Gadahad, and P. Naik, “Empagliflozin modulates seizure activity and oxidative stress in rats with epilepsy”, J Cell Neurosci Oxid Stress, vol. 16, no. 2, pp. 1195–1204, 2024, doi: 10.37212/jcnos.1479756.
ISNAD Holla, Neha et al. “Empagliflozin Modulates Seizure Activity and Oxidative Stress in Rats With Epilepsy”. Journal of Cellular Neuroscience and Oxidative Stress 16/2 (October 2024), 1195-1204. https://doi.org/10.37212/jcnos.1479756.
JAMA Holla N, Adiga S, Kumari M, Rao Kapettu Gadahad M, Naik P. Empagliflozin modulates seizure activity and oxidative stress in rats with epilepsy. J Cell Neurosci Oxid Stress. 2024;16:1195–1204.
MLA Holla, Neha et al. “Empagliflozin Modulates Seizure Activity and Oxidative Stress in Rats With Epilepsy”. Journal of Cellular Neuroscience and Oxidative Stress, vol. 16, no. 2, 2024, pp. 1195-04, doi:10.37212/jcnos.1479756.
Vancouver Holla N, Adiga S, Kumari M, Rao Kapettu Gadahad M, Naik P. Empagliflozin modulates seizure activity and oxidative stress in rats with epilepsy. J Cell Neurosci Oxid Stress. 2024;16(2):1195-204.