Research Article
BibTex RIS Cite
Year 2023, Volume: 15 Issue: 1, 1122 - 1136, 01.05.2023

Abstract

References

  • Alishahi, M., Farzaneh, M., Ghaedrahmati, F., Nejabatdoust, A., Sarkaki. A., & Khoshnam, S.E. (2019). NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. Int J Stroke, 14, 574-591.
  • Allbut,t H.N., & Henderson, J.M. (2007). Use of the narrow beam test in the rat, 6-hydroxydopamine model of Parkinson's disease. Journal of neuroscience methods. 30;159(2):195-202.
  • Allen, B. S., & Buckberg, G. D. (2012). Studies of isolated global brain ischaemia: I. Overview of irreversible brain injury and evolution of a new concept–redefining the time of brain death. Eur Journal Cardiothorac Surg, 41(5), 1132-1137.
  • Balami, J. S., Sutherland, B. A., & Buchan, A. M. (2013). Complications associated with recombinant tissue plasminogen activator therapy for acute ischaemic stroke. CNS Neurol Disord Drug, 12(2), 155-169.
  • Barteneva, N. S., Maltsev, N., & Vorobjev, I. A. (2013). Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol , 3, 49.
  • Calabrese, V., Cornelius, C., Dinkova-Kostova, A. T., Calabrese, E. J., & Mattson, M. P. (2010). Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal, 13(11), 1763-1811.
  • Chen J, & Chopp M. Exosome Therapy for Stroke. Stroke 2018; 49:1083-1090.
  • Chen, J., Li, Y., Katakowski, M., Chen, X., Wang, L., Lu, D., ... & Chopp, M. (2003). Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neuroscience Research, 73(6), 778-786.7.
  • Crumrine, RC., Marder, VJ., Taylor, GM., LaManna, JC., Tsipis CP., ….& Arora V. (2011). Intra-arterial administration of recombinant tissue-type plasminogen activator (rt-PA) causes more intracranial bleeding than does intravenous rt-PA in a transient rat middle cerebral artery occlusion model. Exp Trans Stroke Med, 3(1):1-4.
  • Feng, Y. S., Tan, Z. X., Wang, M. M., Xing, Y., Dong, F., & Zhang, F. (2020). Inhibition of NLRP3 inflammasome: A prospective target for the treatment of ischemic stroke. Front Cell Neurosci, 14, 155.
  • Fluri, F., Schuhmann, M. K., & Kleinschnitz, C. (2015). Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther, 9, 3445.
  • Fujimura, M., Gasche, Y., Morita-Fujimura, Y., Massengale, J., Kawase, M., & Chan, PH. (1999). Early appearance of activated matrix metalloproteinase-9 and blood–brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain research, 18;842(1):92-100.
  • Hocum Stone, L. L. H., Xiao, F., Rotschafer, J., Nan, Z., Juliano, M., Sanberg, C. D., ... & Low, W. C. (2016). Amelioration of ischemic brain injury in rats with human umbilical cord blood stem cells: mechanisms of action. Cell Transplant, 25(8), 1473-1488.
  • Ingberg E, Gudjonsdottir J, Theodorsson E, Theodorsson A, & Ström JO. Elevated body swing test after focal cerebral ischemia in rodents: methodological considerations. BMC Neurosci 2015; 16:50.
  • Kashani, M.H., Ramezani, M & Piravar, Z., (2021). The effect of acrylamide on sperm oxidative stress, total antioxidant levels, tyrosine phosphorylation, and carboxymethyl-lysine expression: A laboratory study. Inter J Rep Bio Med, 19(7), 625.
  • Kim, Y. D., Cha, M. J., Kim, J., Lee, D. H., Lee, H. S., Nam, C. M., ... & Heo, J. H. (2015). Long‐term mortality in patients with coexisting potential causes of ischemic stroke. Inter J Stroke, 10(4), 541-546.
  • Knecht, T., Borlongan, C., & dela Peña, I. (2018). Combination therapy for ischemic stroke: Novel approaches to lengthen therapeutic window of tissue plasminogen activator. Brain Circ, 4(3), 99.
  • Li, Y., Chen, J., Wang, L., Lu, M., & Chopp, M. (2001). Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology, 56(12), 1666-1672.
  • Li, C., Wang, F., Zhang, R., Qiao, P., & Liu, H., (2020). Comparison of proliferation and osteogenic differentiation potential of rat mandibular and femoral bone marrow mesenchymal stem cells in vitro. Stem Cells Dev, 1;29(11):728-36.
  • Nudo, R. J., & Duncan, P. W. (2004). Recovery and rehabilitation in stroke: introduction. Stroke, 35(11_suppl_1), 2690-2690.
  • Liu, F. J., Lim, K. Y., Kaur, P., Sepramaniam, S., Armugam, A., Wong, P. T. H., & Jeyaseelan, K. (2013). microRNAs involved in regulating spontaneous recovery in embolic stroke model. PloS one, 8(6), e66393.
  • Han Y, Seyfried D, Meng Y, Yang D, Schultz L, Chopp M, & Seyfried D. (2018) Multipotent mesenchymal stromal cell–derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat. J Neurosurg, 20;131(1):290-300.
  • Pathakoti, K., Manubolu, M., & Hwang, H. M. (2018). Nanotechnology applications for environmental industry. In Handbook of nanomaterials for industrial applications (pp. 894-907). Elsevier.
  • Safakheil, M., & Safakheil, H. (2020). The effect of exosomes derived from bone marrow stem cells in combination with rosuvastatin on functional recovery and neuroprotection in rats after ischemic stroke. J Mol Neurosci, 70(5), 724-737.
  • Savitz, S. I., & Fisher, M. (2007). Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann Neurol, 61(5), 396-402.
  • Sicard, K. M., & Fisher, M. (2009). Animal models of focal brain ischemia. Exp Transl Stroke Med., 1(1), 1-6.
  • Théry, C., Boussac, M., Véron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., & Amigorena, S. (2001). Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol, 166(12), 7309-7318.
  • Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta, 1820(7), 940-948.
  • Xia, C., Dai, Z., Jin, Y., & Chen, P. (2021) Emerging antioxidant paradigm of mesenchymal stem cell-derived exosome therapy. Front Endocrinol,1523. 30. Xin, H., Li, Y., & Chopp, M. (2014). Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci, 8, 377.
  • Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., ... & Chopp, M. (2013). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem cells, 31(12), 2737-2746.
  • Yang, E., Cai, Y., Yao, X., Liu, J., Wang, Q., Jin, W., ... & Wu, J. (2019). Tissue plasminogen activator disrupts the blood-brain barrier through increasing the inflammatory response mediated by pericytes after cerebral ischemia. Aging (Albany NY), 11(22), 10167.
  • Yi, YW., Lee, JH., Kim, SY., Pack, CG., Ha, DH., Park, SR.,……..& Cho, BS. (2020). Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci. 2020 Jan 19;21(2):665.
  • Yu, X., Wang, X., Zeng, S., & Tuo, X. (2018). Protective effects of primary neural stem cell treatment in ischemic stroke models. Exp Ther Med, 16(3), 2219-2228.
  • Zagrean, A. M., Hermann, D. M., Opris, I., Zagrean, L., & Popa-Wagner, A. (2018). Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic implications. Front Neurosci, 12, 811.
  • Zhang, Y., Chopp, M., Meng, Y., Katakowski, M., Xin, H., Mahmood, A., & Xiong, Y. (2015). Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg, 122(4), 856-867.

The treatment of exosome and recombinant tissue plasminogen activator reduces neuronal cell death in the middle cerebral artery occlusion stroke model of rats

Year 2023, Volume: 15 Issue: 1, 1122 - 1136, 01.05.2023

Abstract

As brain stroke is one of the leading causes of death worldwide, in the current research neuroprotection and performance improvement have been investigated in the Middle cerebral artery occlusion/reperfusion (MCAO/R) animal model treated with exosomes combined with recombinant tissue plasminogen activator (rt-PA). MCAO/R was induced in 25 adult male Wistar rats. Rats received rt-PA (10 mg/kg, i.v.) or exosomes (100 µg/kg) derived from bone marrow mesenchymal stem cells (MSCs). Following the administration of rt-PA alone or in combination with exosomes, a significant increased score of the EBST test was recorded. Also, a decrease in error level of beam test was observed in the treated groups. Cresyl violet staining revealed that the population of dark cells was significantly reduced in all treated groups. The amount of catalase enzyme was significantly increased in all treated groups, especially in the combination therapy group (P<0.05). A considerable increase in superoxide dismutase (SOD) enzyme was observed in the combination therapy group compared to the MCAO/R group (P≤0.001). Our conclusion was approved by the Nlrp1 and Nlrp3 downregulation during combination therapy in the MCAO/R model by a reduction in cell death rate. The density of GFAP-positive cells showed a significant decrease in the exosome with or without rt-PA- treated groups compared to the MCAO/R group (P<0.05). Our observation indicated that exosomes, in combination with rt-PA resulted in a noticeable functional recovery, neuronal regeneration, and reduction of neuronal cell death after a 7-day period of the MCAO/R induction. This novel therapeutic strategy probably can provide a promising treatment for patients who suffered from a stroke.

References

  • Alishahi, M., Farzaneh, M., Ghaedrahmati, F., Nejabatdoust, A., Sarkaki. A., & Khoshnam, S.E. (2019). NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. Int J Stroke, 14, 574-591.
  • Allbut,t H.N., & Henderson, J.M. (2007). Use of the narrow beam test in the rat, 6-hydroxydopamine model of Parkinson's disease. Journal of neuroscience methods. 30;159(2):195-202.
  • Allen, B. S., & Buckberg, G. D. (2012). Studies of isolated global brain ischaemia: I. Overview of irreversible brain injury and evolution of a new concept–redefining the time of brain death. Eur Journal Cardiothorac Surg, 41(5), 1132-1137.
  • Balami, J. S., Sutherland, B. A., & Buchan, A. M. (2013). Complications associated with recombinant tissue plasminogen activator therapy for acute ischaemic stroke. CNS Neurol Disord Drug, 12(2), 155-169.
  • Barteneva, N. S., Maltsev, N., & Vorobjev, I. A. (2013). Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol , 3, 49.
  • Calabrese, V., Cornelius, C., Dinkova-Kostova, A. T., Calabrese, E. J., & Mattson, M. P. (2010). Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal, 13(11), 1763-1811.
  • Chen J, & Chopp M. Exosome Therapy for Stroke. Stroke 2018; 49:1083-1090.
  • Chen, J., Li, Y., Katakowski, M., Chen, X., Wang, L., Lu, D., ... & Chopp, M. (2003). Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neuroscience Research, 73(6), 778-786.7.
  • Crumrine, RC., Marder, VJ., Taylor, GM., LaManna, JC., Tsipis CP., ….& Arora V. (2011). Intra-arterial administration of recombinant tissue-type plasminogen activator (rt-PA) causes more intracranial bleeding than does intravenous rt-PA in a transient rat middle cerebral artery occlusion model. Exp Trans Stroke Med, 3(1):1-4.
  • Feng, Y. S., Tan, Z. X., Wang, M. M., Xing, Y., Dong, F., & Zhang, F. (2020). Inhibition of NLRP3 inflammasome: A prospective target for the treatment of ischemic stroke. Front Cell Neurosci, 14, 155.
  • Fluri, F., Schuhmann, M. K., & Kleinschnitz, C. (2015). Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther, 9, 3445.
  • Fujimura, M., Gasche, Y., Morita-Fujimura, Y., Massengale, J., Kawase, M., & Chan, PH. (1999). Early appearance of activated matrix metalloproteinase-9 and blood–brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain research, 18;842(1):92-100.
  • Hocum Stone, L. L. H., Xiao, F., Rotschafer, J., Nan, Z., Juliano, M., Sanberg, C. D., ... & Low, W. C. (2016). Amelioration of ischemic brain injury in rats with human umbilical cord blood stem cells: mechanisms of action. Cell Transplant, 25(8), 1473-1488.
  • Ingberg E, Gudjonsdottir J, Theodorsson E, Theodorsson A, & Ström JO. Elevated body swing test after focal cerebral ischemia in rodents: methodological considerations. BMC Neurosci 2015; 16:50.
  • Kashani, M.H., Ramezani, M & Piravar, Z., (2021). The effect of acrylamide on sperm oxidative stress, total antioxidant levels, tyrosine phosphorylation, and carboxymethyl-lysine expression: A laboratory study. Inter J Rep Bio Med, 19(7), 625.
  • Kim, Y. D., Cha, M. J., Kim, J., Lee, D. H., Lee, H. S., Nam, C. M., ... & Heo, J. H. (2015). Long‐term mortality in patients with coexisting potential causes of ischemic stroke. Inter J Stroke, 10(4), 541-546.
  • Knecht, T., Borlongan, C., & dela Peña, I. (2018). Combination therapy for ischemic stroke: Novel approaches to lengthen therapeutic window of tissue plasminogen activator. Brain Circ, 4(3), 99.
  • Li, Y., Chen, J., Wang, L., Lu, M., & Chopp, M. (2001). Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology, 56(12), 1666-1672.
  • Li, C., Wang, F., Zhang, R., Qiao, P., & Liu, H., (2020). Comparison of proliferation and osteogenic differentiation potential of rat mandibular and femoral bone marrow mesenchymal stem cells in vitro. Stem Cells Dev, 1;29(11):728-36.
  • Nudo, R. J., & Duncan, P. W. (2004). Recovery and rehabilitation in stroke: introduction. Stroke, 35(11_suppl_1), 2690-2690.
  • Liu, F. J., Lim, K. Y., Kaur, P., Sepramaniam, S., Armugam, A., Wong, P. T. H., & Jeyaseelan, K. (2013). microRNAs involved in regulating spontaneous recovery in embolic stroke model. PloS one, 8(6), e66393.
  • Han Y, Seyfried D, Meng Y, Yang D, Schultz L, Chopp M, & Seyfried D. (2018) Multipotent mesenchymal stromal cell–derived exosomes improve functional recovery after experimental intracerebral hemorrhage in the rat. J Neurosurg, 20;131(1):290-300.
  • Pathakoti, K., Manubolu, M., & Hwang, H. M. (2018). Nanotechnology applications for environmental industry. In Handbook of nanomaterials for industrial applications (pp. 894-907). Elsevier.
  • Safakheil, M., & Safakheil, H. (2020). The effect of exosomes derived from bone marrow stem cells in combination with rosuvastatin on functional recovery and neuroprotection in rats after ischemic stroke. J Mol Neurosci, 70(5), 724-737.
  • Savitz, S. I., & Fisher, M. (2007). Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann Neurol, 61(5), 396-402.
  • Sicard, K. M., & Fisher, M. (2009). Animal models of focal brain ischemia. Exp Transl Stroke Med., 1(1), 1-6.
  • Théry, C., Boussac, M., Véron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J., & Amigorena, S. (2001). Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol, 166(12), 7309-7318.
  • Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta, 1820(7), 940-948.
  • Xia, C., Dai, Z., Jin, Y., & Chen, P. (2021) Emerging antioxidant paradigm of mesenchymal stem cell-derived exosome therapy. Front Endocrinol,1523. 30. Xin, H., Li, Y., & Chopp, M. (2014). Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci, 8, 377.
  • Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., ... & Chopp, M. (2013). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem cells, 31(12), 2737-2746.
  • Yang, E., Cai, Y., Yao, X., Liu, J., Wang, Q., Jin, W., ... & Wu, J. (2019). Tissue plasminogen activator disrupts the blood-brain barrier through increasing the inflammatory response mediated by pericytes after cerebral ischemia. Aging (Albany NY), 11(22), 10167.
  • Yi, YW., Lee, JH., Kim, SY., Pack, CG., Ha, DH., Park, SR.,……..& Cho, BS. (2020). Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci. 2020 Jan 19;21(2):665.
  • Yu, X., Wang, X., Zeng, S., & Tuo, X. (2018). Protective effects of primary neural stem cell treatment in ischemic stroke models. Exp Ther Med, 16(3), 2219-2228.
  • Zagrean, A. M., Hermann, D. M., Opris, I., Zagrean, L., & Popa-Wagner, A. (2018). Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic implications. Front Neurosci, 12, 811.
  • Zhang, Y., Chopp, M., Meng, Y., Katakowski, M., Xin, H., Mahmood, A., & Xiong, Y. (2015). Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg, 122(4), 856-867.
There are 35 citations in total.

Details

Primary Language English
Subjects Neurosciences
Journal Section Original Articles
Authors

Mohsen Safakheil 0000-0003-4900-0151

Mina Ramezani 0000-0002-9982-1276

Azadeh Mohammadgholi 0000-0002-5012-3768

Publication Date May 1, 2023
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Safakheil, M., Ramezani, M., & Mohammadgholi, A. (2023). The treatment of exosome and recombinant tissue plasminogen activator reduces neuronal cell death in the middle cerebral artery occlusion stroke model of rats. Journal of Cellular Neuroscience and Oxidative Stress, 15(1), 1122-1136.
AMA Safakheil M, Ramezani M, Mohammadgholi A. The treatment of exosome and recombinant tissue plasminogen activator reduces neuronal cell death in the middle cerebral artery occlusion stroke model of rats. J Cell Neurosci Oxid Stress. May 2023;15(1):1122-1136.
Chicago Safakheil, Mohsen, Mina Ramezani, and Azadeh Mohammadgholi. “The Treatment of Exosome and Recombinant Tissue Plasminogen Activator Reduces Neuronal Cell Death in the Middle Cerebral Artery Occlusion Stroke Model of Rats”. Journal of Cellular Neuroscience and Oxidative Stress 15, no. 1 (May 2023): 1122-36.
EndNote Safakheil M, Ramezani M, Mohammadgholi A (May 1, 2023) The treatment of exosome and recombinant tissue plasminogen activator reduces neuronal cell death in the middle cerebral artery occlusion stroke model of rats. Journal of Cellular Neuroscience and Oxidative Stress 15 1 1122–1136.
IEEE M. Safakheil, M. Ramezani, and A. Mohammadgholi, “The treatment of exosome and recombinant tissue plasminogen activator reduces neuronal cell death in the middle cerebral artery occlusion stroke model of rats”, J Cell Neurosci Oxid Stress, vol. 15, no. 1, pp. 1122–1136, 2023.
ISNAD Safakheil, Mohsen et al. “The Treatment of Exosome and Recombinant Tissue Plasminogen Activator Reduces Neuronal Cell Death in the Middle Cerebral Artery Occlusion Stroke Model of Rats”. Journal of Cellular Neuroscience and Oxidative Stress 15/1 (May 2023), 1122-1136.
JAMA Safakheil M, Ramezani M, Mohammadgholi A. The treatment of exosome and recombinant tissue plasminogen activator reduces neuronal cell death in the middle cerebral artery occlusion stroke model of rats. J Cell Neurosci Oxid Stress. 2023;15:1122–1136.
MLA Safakheil, Mohsen et al. “The Treatment of Exosome and Recombinant Tissue Plasminogen Activator Reduces Neuronal Cell Death in the Middle Cerebral Artery Occlusion Stroke Model of Rats”. Journal of Cellular Neuroscience and Oxidative Stress, vol. 15, no. 1, 2023, pp. 1122-36.
Vancouver Safakheil M, Ramezani M, Mohammadgholi A. The treatment of exosome and recombinant tissue plasminogen activator reduces neuronal cell death in the middle cerebral artery occlusion stroke model of rats. J Cell Neurosci Oxid Stress. 2023;15(1):1122-36.