Year 2023,
Volume: 15 Issue: 3, 1157 - 1161, 31.12.2023
Megharani Mahajan
,
Sandhya Sitasawad
References
- Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S. et al. (2021). Oxidative stress in cancer cell metabolism. Antioxidants 10(5): 642. https://doi.org/10.3390/antiox10050642
- Arfmann-Knübel S, Struck B, Genrich G, Helm O, Sipos B, Sebens S. et al. (2015). The crosstalk between Nrf2 and TGF-β1 in the epithelial-mesenchymal transition of pancreatic duct epithelial cells. PLoS One 10(7): e0132978. https://doi.org/10.1371/journal.pone.0132978
- Brahimi-Horn MC, Chiche J, Pouysségur J. (2007). Hypoxia and cancer. J Mol Med. 85: 1301-1307. 10.1007/s00109-007-0281-3
- Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N. et al. (2009). Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res. 15(10): 3423-3432. 10.1158/1078-0432.CCR-08-2822
- Ji X, Wang H, Zhu J, Zhu L, Pan H, Li W. et al. (2014). Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia‐induced activation of HIF‐1α. IJC. 135(3): 574-584. 10.1002/ijc.28699
- Joshi S, Kumar S, Ponnusamy, MP, Batra S. K. (2016). Hypoxia-induced oxidative stress promotes MUC4 degradation via autophagy to enhance pancreatic cancer cells survival. Oncogene. 35(45): 5882-5892. 10.1038/onc.2016.119
- Kim TH, Hur EG, Kang SJ, Kim JA, Thapa D, Lee, YM. et al. (2011). NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Cancer Res. 71(6): 2260-2275. 10.1158/0008-5472.CAN-10-3007
- Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi, A. (2019). Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int J Mol Sci. 20(23): 6055. 10.3390/ijms20236055
- Liu QQ, Ren K, Liu SH, Li WM, Huang CJ, Yang XH. (2019). MicroRNA-140-5p aggravates hypertension and oxidative stress of atherosclerosis via targeting Nrf2 and Sirt2. Int J Mol Med. 43(2): 839-849. 10.3892/ijmm.2018.3996
- Mahajan M, Sitasawad S. (2021). Mir-140-5p attenuates hypoxia-induced breast cancer progression by targeting nrf2/ho-1 axis in a keap1-independent mechanism. Cells. 11(1): 12. 10.3390/cells11010012
- Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N. et al. (2014). Antioxidant gene therapy against neuronal cell death. Pharmacology & therapeutics. 142(2): 206-230. 10.1016/j.pharmthera.2013.12.007
- Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G. et al. (2020). ROS in cancer therapy: The bright side of the moon. Exp Mol Med. 52(2): 192-203. 10.1038/s12276-020-0384-2
- Sato H, Shibata M, Shimizu T, Shibata S, Toriumi H, Ebine T. et al. (2013). Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neurosci. 248: 345-358. 10.1016/j.neuroscience.2013.06.010
- Shen H, Yang Y, Xia S, Rao B, Zhang J, Wang J. (2014). Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus. 27(7): 685-692. 10.1111/dote.12124
- Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, Hirohashi, S. (2008). Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135(4): 1358-1368. https://doi.org/10.1053/j.gastro.2008.06.082
- Singh A, Bodas M, Wakabayashi N, Bunz F, Biswal S. (2010). Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. ARS. 13(11): 1627-1637. https://doi.org/10.1089/ars.2010.3219
- Thannickal V J, Fanburg BL. (2000). Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 279(6): L1005-L1028. https://doi.org/10.1152/ajplung.2000.279.6.L1005
- Vera-Ramirez L, Ramirez-Tortosa M, Perez-Lopez P, Granados-Principal S, Battino M, Quiles JL. (2012). Long-term effects of systemic cancer treatment on DNA oxidative damage: The potential for targeted therapies. Cancer Lett. 327(1-2): 134-141. https://doi.org/10.1016/j.canlet.2011.12.029
- Wang Y, Branicky R, Noë A, Hekimi S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. JCB. 217(6): 1915-1928. https://doi.org/10.1083/jcb.201708007
- Williams KJ, Cowen RL, Stratford IJ. (2001). Hypoxia and oxidative stress in breast cancer Tumour hypoxia–therapeutic considerations. BCR. 3(5): 1-4. 10.1186/bcr316
miR-140-5p regulates the hypoxia-mediated oxidative stress through Nrf2
Year 2023,
Volume: 15 Issue: 3, 1157 - 1161, 31.12.2023
Megharani Mahajan
,
Sandhya Sitasawad
Abstract
Rapid and uncontrollable cell proliferation, altered metabolism, and abnormal vasculature of cancer cells make them hypoxic and result in the generation of reactive oxygen species (ROS), causing oxidative stress. Hypoxia-mediated oxidative stress represents a significant barrier to effective cancer treatment. miRNAs are emerging as a potential regulator of hypoxia-responsive genes and hypoxia-mediated oxidative stress. Based on the role of miR-140-5p in regulating a hypoxia-responsive gene, this study is aimed at understanding the miR-140-5p role in regulating hypoxia-mediated oxidative stress under breast tumor hypoxia. We found that the miR-140-5p might control the hypoxia-mediated ROS generation by regulating the Nrf2 expression. Knowing the significance of miR-140-5p in regulating hypoxia-mediated oxidative stress and breast tumor progression, targeting miR-140-5p might represent a promising strategy for anti-breast cancer therapy.
References
- Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S. et al. (2021). Oxidative stress in cancer cell metabolism. Antioxidants 10(5): 642. https://doi.org/10.3390/antiox10050642
- Arfmann-Knübel S, Struck B, Genrich G, Helm O, Sipos B, Sebens S. et al. (2015). The crosstalk between Nrf2 and TGF-β1 in the epithelial-mesenchymal transition of pancreatic duct epithelial cells. PLoS One 10(7): e0132978. https://doi.org/10.1371/journal.pone.0132978
- Brahimi-Horn MC, Chiche J, Pouysségur J. (2007). Hypoxia and cancer. J Mol Med. 85: 1301-1307. 10.1007/s00109-007-0281-3
- Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N. et al. (2009). Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res. 15(10): 3423-3432. 10.1158/1078-0432.CCR-08-2822
- Ji X, Wang H, Zhu J, Zhu L, Pan H, Li W. et al. (2014). Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia‐induced activation of HIF‐1α. IJC. 135(3): 574-584. 10.1002/ijc.28699
- Joshi S, Kumar S, Ponnusamy, MP, Batra S. K. (2016). Hypoxia-induced oxidative stress promotes MUC4 degradation via autophagy to enhance pancreatic cancer cells survival. Oncogene. 35(45): 5882-5892. 10.1038/onc.2016.119
- Kim TH, Hur EG, Kang SJ, Kim JA, Thapa D, Lee, YM. et al. (2011). NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Cancer Res. 71(6): 2260-2275. 10.1158/0008-5472.CAN-10-3007
- Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi, A. (2019). Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int J Mol Sci. 20(23): 6055. 10.3390/ijms20236055
- Liu QQ, Ren K, Liu SH, Li WM, Huang CJ, Yang XH. (2019). MicroRNA-140-5p aggravates hypertension and oxidative stress of atherosclerosis via targeting Nrf2 and Sirt2. Int J Mol Med. 43(2): 839-849. 10.3892/ijmm.2018.3996
- Mahajan M, Sitasawad S. (2021). Mir-140-5p attenuates hypoxia-induced breast cancer progression by targeting nrf2/ho-1 axis in a keap1-independent mechanism. Cells. 11(1): 12. 10.3390/cells11010012
- Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N. et al. (2014). Antioxidant gene therapy against neuronal cell death. Pharmacology & therapeutics. 142(2): 206-230. 10.1016/j.pharmthera.2013.12.007
- Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G. et al. (2020). ROS in cancer therapy: The bright side of the moon. Exp Mol Med. 52(2): 192-203. 10.1038/s12276-020-0384-2
- Sato H, Shibata M, Shimizu T, Shibata S, Toriumi H, Ebine T. et al. (2013). Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neurosci. 248: 345-358. 10.1016/j.neuroscience.2013.06.010
- Shen H, Yang Y, Xia S, Rao B, Zhang J, Wang J. (2014). Blockage of Nrf2 suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus. 27(7): 685-692. 10.1111/dote.12124
- Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, Hirohashi, S. (2008). Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135(4): 1358-1368. https://doi.org/10.1053/j.gastro.2008.06.082
- Singh A, Bodas M, Wakabayashi N, Bunz F, Biswal S. (2010). Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. ARS. 13(11): 1627-1637. https://doi.org/10.1089/ars.2010.3219
- Thannickal V J, Fanburg BL. (2000). Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 279(6): L1005-L1028. https://doi.org/10.1152/ajplung.2000.279.6.L1005
- Vera-Ramirez L, Ramirez-Tortosa M, Perez-Lopez P, Granados-Principal S, Battino M, Quiles JL. (2012). Long-term effects of systemic cancer treatment on DNA oxidative damage: The potential for targeted therapies. Cancer Lett. 327(1-2): 134-141. https://doi.org/10.1016/j.canlet.2011.12.029
- Wang Y, Branicky R, Noë A, Hekimi S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. JCB. 217(6): 1915-1928. https://doi.org/10.1083/jcb.201708007
- Williams KJ, Cowen RL, Stratford IJ. (2001). Hypoxia and oxidative stress in breast cancer Tumour hypoxia–therapeutic considerations. BCR. 3(5): 1-4. 10.1186/bcr316