Research Article
BibTex RIS Cite
Year 2023, Volume: 15 Issue: 3, 1162 - 1172, 31.12.2023
https://doi.org/10.37212/jcnos.1434545

Abstract

Project Number

2023-06

References

  • Ahmedy OA, Ibrahim SM, Salem HH, Kandil EA. (2020). Antiulcerogenic effect of melittin via mitigating TLR4/TRAF6 mediated NF-κB and p38MAPK pathways in acetic acid-induced ulcerative colitis in mice. Chem Biol Interact. 331:109276. https://doi.org/10.1016/j.cbi.2020.109276.
  • Akyuva Y, Nazıroğlu M. (2020) Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep. 10(1):6449. https://doi.org/10.1038/s41598-020-63577-5.
  • Armağan HH, Nazıroğlu M. (2021). Curcumin attenuates hypoxia-Induced oxidative neurotoxicity, apoptosis, calcium, and zinc ion influxes in a neuronal cell line: Involvement of TRPM2 channel. Neurotox Res. 39(3):618-633. https://doi.org/10.1007/s12640-020-00314-w.
  • Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. (2020) Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients. 12(11):3360. https://doi.org/10.3390/nu12113360.
  • Chen Q, Lin W, Yin Z, Zou Y, Liang S, Ruan S, et al. (2019) Melittin Inhibits Hypoxia-Induced Vasculogenic Mimicry Formation and Epithelial-Mesenchymal Transition through Suppression of HIF-1α/Akt Pathway in Liver Cancer. Evid Based Complement Alternat Med. 2019:9602935. https://doi.org/10.1155/2019/9602935.
  • Ertilav K, Nazıroğlu M. (2023) Honey bee venom melittin increases the oxidant activity of cisplatin and kills human glioblastoma cells by stimulating the TRPM2 channel. Toxicon. 222:106993. https://doi.org/10.1016/j.toxicon.2022.106993.
  • Granzotto A, Sensi SL. (2015) Intracellular zinc is a critical intermediate in the excitotoxic cascade. Neurobiol Dis. 81:25-37. https://doi.org/10.1016/j.nbd.2015.04.010.
  • Halliwell B. (1992) Reactive oxygen species and the central nervous system. J Neurochem. 59(5):1609-23. https://doi.org/10.1111/j.1471-4159.1992.tb10990.x.
  • Halliwell B. (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem. 97(6):1634-1658. https://doi.org/10.1111/j.1471-4159.2006.03907.x.
  • Han SM, Kim JM, Park KK, Chang YC, Pak SC. (2014) Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. BMC Complement Altern Med. 14:286. https://doi.org/10.1186/1472-6882-14-286.
  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, et al. (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell. 9(1):163-173. https://doi.org/10.1016/S1097-2765(01)00438-5.
  • Jung SY, Lee KW, Choi SM, Yang EJ. (2015) Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells. Toxins (Basel). 7(9):3715-3726. https://doi.org/10.3390/toxins7093715. Kim YH, Eom JW, Koh JY. (2020) Mechanism of Zinc Excitotoxicity: A Focus on AMPK. Front Neurosci. 14:577958. https://doi.org/10.3389/fnins.2020.577958.
  • Kounis NG, Koniari I, Tzanis G, Soufras GD, Velissaris D, Hahalis G. (2020) Anaphylaxis-induced atrial fibrillation and anesthesia: Pathophysiologic and therapeutic considerations. Ann Card Anaesth. 23(1):1-6. https://doi.org/10.4103/aca.ACA_100_19.
  • Kumar VS, Gopalakrishnan A, Naziroğlu M, Rajanikant GK. (2014) Calcium ion--the key player in cerebral ischemia. Curr Med Chem. 21(18):2065-2075. https://doi.org/10.2174/0929867321666131228204246. Liang J, Wu S, Xie W, He H. (2018) Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. Drug Des Devel Ther. 12:845-853. https://doi.org/10.2147/DDDT.S160046.
  • Muñoz-Sánchez J, Chánez-Cárdenas ME. (2019) The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 39(4):556-570. https://doi.org/10.1002/jat.3749.
  • Nakagawa C, Suzuki-Karasaki M, Suzuki-Karasaki M, Ochiai T, Suzuki-Karasaki Y. (2020) The Mitochondrial Ca2+ Overload via Voltage-Gated Ca2+ Entry Contributes to an Anti-Melanoma Effect of Diallyl Trisulfide. Int J Mol Sci. 21(2):491. https://doi.org/10.3390/ijms21020491.
  • Nazıroğlu M, Lückhoff A. (2008) Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci. 270(1-2):152-158. https://doi.org/10.1016/j.jns.2008.03.003.
  • Nazıroğlu M. (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res. 32(11):1990-2001. https://doi.org/10.1007/s11064-007-9386-x. Nazıroğlu M. (2022) A novel antagonist of TRPM2 and TRPV4 channels: Carvacrol. Metab Brain Dis. 37(3):711-728. https://doi.org/10.1007/s11011-021-00887-1.
  • Nguyen CD, Lee G. (2021) Neuroprotective Activity of Melittin-The Main Component of Bee Venom-Against Oxidative Stress Induced by Aβ25-35 in In Vitro and In Vivo Models. Antioxidants (Basel). 10(11):1654. https://doi.org/10.3390/antiox10111654.
  • Osmanlıoğlu HÖ. (2022) Ketamine attenuates hypoxia-induced cell death and oxidative toxicity via inhibition of the TRPM2 channel in neuronal cells. J Cell Neurosci Oxid Stress 14(3): 1095-1104. Scolletta S, Carlucci F, Biagioli B, Marchetti L, Maccherini M, Carlucci G, Rosi F, Salvi M, Tabucchi A. (2007) NT-proBNP changes, oxidative stress, and energy status of hypertrophic myocardium following ischemia/reperfusion injury. Biomed Pharmacother. 61(2-3):160-6. https://doi.org/10.1016/j.biopha.2006.10.007.
  • Sha'fie MSA, Rathakrishnan S, Hazanol IN, et al. (2020) Ethanol Induces Microglial Cell Death via the NOX/ROS/PARP/TRPM2 Signalling Pathway. Antioxidants (Basel). 9(12):1253. https://doi.org/10.3390/antiox9121253.
  • Silva J, Monge-Fuentes V, Gomes F, Lopes K, dos Anjos L, Campos G, et al. (2015) Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools. Toxins (Basel). 7(8):3179-209. https://doi.org/10.3390/toxins7083179.
  • Soares-Silva B, Beserra-Filho JIA, Morera PMA, Custódio-Silva AC, Maria-Macêdo A, Silva-Martins S, Alexandre-Silva V, Silva SP, Silva RH, Ribeiro AM. (2022). The bee venom active compound melittin protects against bicuculline-induced seizures and hippocampal astrocyte activation in rats. Neuropeptides. 91:102209. https://doi.org/10.1016/j.npep.2021.102209.
  • Togashi K, Inada H, Tominaga M. (2008) Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol. 153(6):1324-1330. https://doi.org/10.1038/sj.bjp.0707675.
  • Vaglienti MV, Subirada PV, Barcelona PF, Bonacci G, Sanchez MC. 2022. Quantification of Reactive Oxygen Species Using 2',7'-Dichlorofluorescein Diacetate Probe and Flow-Cytometry in Müller Glial Cells. J Vis Exp. (183). https://doi.org/10.3791/63337.
  • Wu QF, Qian C, Zhao N, Dong Q, Li J, Wang BB, Chen L, Yu L, Han B, Du YM, Liao YH. (2017) Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. Cell Death Dis. 8(5):e2828. https://doi.org/10.1038/cddis.2017.227.
  • Xing X, Zhang X, Fan J, Zhang C, Zhang L, Duan R, Hao H. (2024) Neuroprotective Effects of Melittin Against Cerebral Ischemia and Inflammatory Injury via Upregulation of MCPIP1 to Suppress NF-κB Activation In Vivo and In Vitro. Neurochem Res. 49(2):348-362. https://doi.org/10.1007/s11064-023-04030-7.
  • Yıldızhan K, Nazıroğlu M. (2023) NMDA Receptor Activation Stimulates Hypoxia-Induced TRPM2 Channel Activation, Mitochondrial Oxidative Stress, and Apoptosis in Neuronal Cell Line: Modular Role of Memantine. Brain Res. 1803:148232. https://doi.org/10.1016/j.brainres.2023.148232.

Neuroprotective action of honey bee venom (melittin) against hypoxiainduced oxidative toxicity and cell death via inhibition of the TRPM2 channel

Year 2023, Volume: 15 Issue: 3, 1162 - 1172, 31.12.2023
https://doi.org/10.37212/jcnos.1434545

Abstract

One bioactive element of honeybee venom is melittin (MEL). MEL induced oxidant and apoptotic activities through the increase of mitochondrial Zn2+ and Ca2+ in tumor cells, but it also induced neuroprotective activity by inhibiting the cell death, intracellular reactive oxygen species (iROS), and mitochondrial ROS (mROS) productions in neurons. By stimulating the TRPM2 channel, hypoxia (HPO) enhances the effects of oxidative stress and neuronal death; however, its inhibition prevents the alterations. I studied the neuroprotective effect of MEL on HPO-mediated oxidative neurotoxicity and cell death in SH-SY5Y neuronal cells by altering the TRPM2 signaling pathways.
In the SH-SY5Y cells, five groups were induced as control, MEL (1 ug/ml for 24 hrs), HPO (CoCl2 and 200 M for 24 hrs), HPO + MEL, and HPO + TRPM2 antagonist (2-aminoethoxydiphenyl borate, 2APB) (100 M for 2 hrs).
The amounts of cytosolic free Ca2+ were increased in the HPO group by the stimulation of hydrogen peroxide, although they were decreased in the cells by the treatment of 2APB and MEL. The amount of cytosolic free Ca2+ was higher in the HPO group than in the control group. The amounts of cell death (propidium iodide positive cell number), oxidants (mROS and iROS), mitochondrial membrane depolarization, and cytosolic free Zn2+ were higher in the HPO group than in the control and MEL groups, although their amounts were lower in the HPO + MEL and HPO + 2APB groups than in the HPO group only.
In conclusion, MEL therapy reduced the amount of HPO-induced oxidative stress and neuronal deaths in SH-SY5Y cells by inhibiting TRPM2. The MEL could be considered as a potential protective component against oxidative neuronal damage caused by HPO.

Supporting Institution

BSN Health, Analyses, Innov., Consult., Org., Agricul., Trade Ltd, Göller Bölgesi Teknokenti, Isparta, Turkiye

Project Number

2023-06

References

  • Ahmedy OA, Ibrahim SM, Salem HH, Kandil EA. (2020). Antiulcerogenic effect of melittin via mitigating TLR4/TRAF6 mediated NF-κB and p38MAPK pathways in acetic acid-induced ulcerative colitis in mice. Chem Biol Interact. 331:109276. https://doi.org/10.1016/j.cbi.2020.109276.
  • Akyuva Y, Nazıroğlu M. (2020) Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep. 10(1):6449. https://doi.org/10.1038/s41598-020-63577-5.
  • Armağan HH, Nazıroğlu M. (2021). Curcumin attenuates hypoxia-Induced oxidative neurotoxicity, apoptosis, calcium, and zinc ion influxes in a neuronal cell line: Involvement of TRPM2 channel. Neurotox Res. 39(3):618-633. https://doi.org/10.1007/s12640-020-00314-w.
  • Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. (2020) Bee Venom: An Updating Review of Its Bioactive Molecules and Its Health Applications. Nutrients. 12(11):3360. https://doi.org/10.3390/nu12113360.
  • Chen Q, Lin W, Yin Z, Zou Y, Liang S, Ruan S, et al. (2019) Melittin Inhibits Hypoxia-Induced Vasculogenic Mimicry Formation and Epithelial-Mesenchymal Transition through Suppression of HIF-1α/Akt Pathway in Liver Cancer. Evid Based Complement Alternat Med. 2019:9602935. https://doi.org/10.1155/2019/9602935.
  • Ertilav K, Nazıroğlu M. (2023) Honey bee venom melittin increases the oxidant activity of cisplatin and kills human glioblastoma cells by stimulating the TRPM2 channel. Toxicon. 222:106993. https://doi.org/10.1016/j.toxicon.2022.106993.
  • Granzotto A, Sensi SL. (2015) Intracellular zinc is a critical intermediate in the excitotoxic cascade. Neurobiol Dis. 81:25-37. https://doi.org/10.1016/j.nbd.2015.04.010.
  • Halliwell B. (1992) Reactive oxygen species and the central nervous system. J Neurochem. 59(5):1609-23. https://doi.org/10.1111/j.1471-4159.1992.tb10990.x.
  • Halliwell B. (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem. 97(6):1634-1658. https://doi.org/10.1111/j.1471-4159.2006.03907.x.
  • Han SM, Kim JM, Park KK, Chang YC, Pak SC. (2014) Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. BMC Complement Altern Med. 14:286. https://doi.org/10.1186/1472-6882-14-286.
  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, et al. (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell. 9(1):163-173. https://doi.org/10.1016/S1097-2765(01)00438-5.
  • Jung SY, Lee KW, Choi SM, Yang EJ. (2015) Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells. Toxins (Basel). 7(9):3715-3726. https://doi.org/10.3390/toxins7093715. Kim YH, Eom JW, Koh JY. (2020) Mechanism of Zinc Excitotoxicity: A Focus on AMPK. Front Neurosci. 14:577958. https://doi.org/10.3389/fnins.2020.577958.
  • Kounis NG, Koniari I, Tzanis G, Soufras GD, Velissaris D, Hahalis G. (2020) Anaphylaxis-induced atrial fibrillation and anesthesia: Pathophysiologic and therapeutic considerations. Ann Card Anaesth. 23(1):1-6. https://doi.org/10.4103/aca.ACA_100_19.
  • Kumar VS, Gopalakrishnan A, Naziroğlu M, Rajanikant GK. (2014) Calcium ion--the key player in cerebral ischemia. Curr Med Chem. 21(18):2065-2075. https://doi.org/10.2174/0929867321666131228204246. Liang J, Wu S, Xie W, He H. (2018) Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. Drug Des Devel Ther. 12:845-853. https://doi.org/10.2147/DDDT.S160046.
  • Muñoz-Sánchez J, Chánez-Cárdenas ME. (2019) The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 39(4):556-570. https://doi.org/10.1002/jat.3749.
  • Nakagawa C, Suzuki-Karasaki M, Suzuki-Karasaki M, Ochiai T, Suzuki-Karasaki Y. (2020) The Mitochondrial Ca2+ Overload via Voltage-Gated Ca2+ Entry Contributes to an Anti-Melanoma Effect of Diallyl Trisulfide. Int J Mol Sci. 21(2):491. https://doi.org/10.3390/ijms21020491.
  • Nazıroğlu M, Lückhoff A. (2008) Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci. 270(1-2):152-158. https://doi.org/10.1016/j.jns.2008.03.003.
  • Nazıroğlu M. (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res. 32(11):1990-2001. https://doi.org/10.1007/s11064-007-9386-x. Nazıroğlu M. (2022) A novel antagonist of TRPM2 and TRPV4 channels: Carvacrol. Metab Brain Dis. 37(3):711-728. https://doi.org/10.1007/s11011-021-00887-1.
  • Nguyen CD, Lee G. (2021) Neuroprotective Activity of Melittin-The Main Component of Bee Venom-Against Oxidative Stress Induced by Aβ25-35 in In Vitro and In Vivo Models. Antioxidants (Basel). 10(11):1654. https://doi.org/10.3390/antiox10111654.
  • Osmanlıoğlu HÖ. (2022) Ketamine attenuates hypoxia-induced cell death and oxidative toxicity via inhibition of the TRPM2 channel in neuronal cells. J Cell Neurosci Oxid Stress 14(3): 1095-1104. Scolletta S, Carlucci F, Biagioli B, Marchetti L, Maccherini M, Carlucci G, Rosi F, Salvi M, Tabucchi A. (2007) NT-proBNP changes, oxidative stress, and energy status of hypertrophic myocardium following ischemia/reperfusion injury. Biomed Pharmacother. 61(2-3):160-6. https://doi.org/10.1016/j.biopha.2006.10.007.
  • Sha'fie MSA, Rathakrishnan S, Hazanol IN, et al. (2020) Ethanol Induces Microglial Cell Death via the NOX/ROS/PARP/TRPM2 Signalling Pathway. Antioxidants (Basel). 9(12):1253. https://doi.org/10.3390/antiox9121253.
  • Silva J, Monge-Fuentes V, Gomes F, Lopes K, dos Anjos L, Campos G, et al. (2015) Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools. Toxins (Basel). 7(8):3179-209. https://doi.org/10.3390/toxins7083179.
  • Soares-Silva B, Beserra-Filho JIA, Morera PMA, Custódio-Silva AC, Maria-Macêdo A, Silva-Martins S, Alexandre-Silva V, Silva SP, Silva RH, Ribeiro AM. (2022). The bee venom active compound melittin protects against bicuculline-induced seizures and hippocampal astrocyte activation in rats. Neuropeptides. 91:102209. https://doi.org/10.1016/j.npep.2021.102209.
  • Togashi K, Inada H, Tominaga M. (2008) Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol. 153(6):1324-1330. https://doi.org/10.1038/sj.bjp.0707675.
  • Vaglienti MV, Subirada PV, Barcelona PF, Bonacci G, Sanchez MC. 2022. Quantification of Reactive Oxygen Species Using 2',7'-Dichlorofluorescein Diacetate Probe and Flow-Cytometry in Müller Glial Cells. J Vis Exp. (183). https://doi.org/10.3791/63337.
  • Wu QF, Qian C, Zhao N, Dong Q, Li J, Wang BB, Chen L, Yu L, Han B, Du YM, Liao YH. (2017) Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. Cell Death Dis. 8(5):e2828. https://doi.org/10.1038/cddis.2017.227.
  • Xing X, Zhang X, Fan J, Zhang C, Zhang L, Duan R, Hao H. (2024) Neuroprotective Effects of Melittin Against Cerebral Ischemia and Inflammatory Injury via Upregulation of MCPIP1 to Suppress NF-κB Activation In Vivo and In Vitro. Neurochem Res. 49(2):348-362. https://doi.org/10.1007/s11064-023-04030-7.
  • Yıldızhan K, Nazıroğlu M. (2023) NMDA Receptor Activation Stimulates Hypoxia-Induced TRPM2 Channel Activation, Mitochondrial Oxidative Stress, and Apoptosis in Neuronal Cell Line: Modular Role of Memantine. Brain Res. 1803:148232. https://doi.org/10.1016/j.brainres.2023.148232.
There are 28 citations in total.

Details

Primary Language English
Subjects Cellular Nervous System
Journal Section Original Articles
Authors

Kemal Ertilav 0000-0002-0520-0672

Project Number 2023-06
Publication Date December 31, 2023
Submission Date November 20, 2023
Acceptance Date December 26, 2023
Published in Issue Year 2023 Volume: 15 Issue: 3

Cite

APA Ertilav, K. (2023). Neuroprotective action of honey bee venom (melittin) against hypoxiainduced oxidative toxicity and cell death via inhibition of the TRPM2 channel. Journal of Cellular Neuroscience and Oxidative Stress, 15(3), 1162-1172. https://doi.org/10.37212/jcnos.1434545
AMA Ertilav K. Neuroprotective action of honey bee venom (melittin) against hypoxiainduced oxidative toxicity and cell death via inhibition of the TRPM2 channel. J Cell Neurosci Oxid Stress. December 2023;15(3):1162-1172. doi:10.37212/jcnos.1434545
Chicago Ertilav, Kemal. “Neuroprotective Action of Honey Bee Venom (melittin) Against Hypoxiainduced Oxidative Toxicity and Cell Death via Inhibition of the TRPM2 Channel”. Journal of Cellular Neuroscience and Oxidative Stress 15, no. 3 (December 2023): 1162-72. https://doi.org/10.37212/jcnos.1434545.
EndNote Ertilav K (December 1, 2023) Neuroprotective action of honey bee venom (melittin) against hypoxiainduced oxidative toxicity and cell death via inhibition of the TRPM2 channel. Journal of Cellular Neuroscience and Oxidative Stress 15 3 1162–1172.
IEEE K. Ertilav, “Neuroprotective action of honey bee venom (melittin) against hypoxiainduced oxidative toxicity and cell death via inhibition of the TRPM2 channel”, J Cell Neurosci Oxid Stress, vol. 15, no. 3, pp. 1162–1172, 2023, doi: 10.37212/jcnos.1434545.
ISNAD Ertilav, Kemal. “Neuroprotective Action of Honey Bee Venom (melittin) Against Hypoxiainduced Oxidative Toxicity and Cell Death via Inhibition of the TRPM2 Channel”. Journal of Cellular Neuroscience and Oxidative Stress 15/3 (December 2023), 1162-1172. https://doi.org/10.37212/jcnos.1434545.
JAMA Ertilav K. Neuroprotective action of honey bee venom (melittin) against hypoxiainduced oxidative toxicity and cell death via inhibition of the TRPM2 channel. J Cell Neurosci Oxid Stress. 2023;15:1162–1172.
MLA Ertilav, Kemal. “Neuroprotective Action of Honey Bee Venom (melittin) Against Hypoxiainduced Oxidative Toxicity and Cell Death via Inhibition of the TRPM2 Channel”. Journal of Cellular Neuroscience and Oxidative Stress, vol. 15, no. 3, 2023, pp. 1162-7, doi:10.37212/jcnos.1434545.
Vancouver Ertilav K. Neuroprotective action of honey bee venom (melittin) against hypoxiainduced oxidative toxicity and cell death via inhibition of the TRPM2 channel. J Cell Neurosci Oxid Stress. 2023;15(3):1162-7.