Research Article
BibTex RIS Cite
Year 2021, , 13 - 17, 29.06.2021
https://doi.org/10.52876/jcs.935773

Abstract

References

  • [1] Nagabandi, A., Konolige, K., Levine, S., & Kumar, V. (2020, May). Deep dynamics models for learning dexterous manipulation. In Conference on Robot Learning (pp. 1101-1112). PMLR.
  • [2] Arimoto, S. (1995). Fundamental problems of robot control: part II a nonlinear circuit theory towards an understanding of dexterous motions. Robotica, 13(2), 111-122.
  • [3] Mattar, E. (2013). A survey of bio-inspired robotics hands implementation: New directions in dexterous manipulation. Robotics and Autonomous Systems, 61(5), 517-544.
  • [4] Ott, C., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., Borst, C., ... & Hirzinger, G. (2006, December). A humanoid two-arm system for dexterous manipulation. In 2006 6th IEEE-RAS International Conference on Humanoid Robots (pp. 276-283). IEEE.
  • [5] Maekawa, A., Matsubara, S., Wakisaka, S., Uriu, D., Hiyama, A., & Inami, M. (2020, April). Dynamic Motor Skill Synthesis with Human-Machine Mutual Actuation. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-12).
  • [6] Abbatematteo, B., Rosen, E., Tellex, S., & Konidaris, G. (2021). Bootstrapping Motor Skill Learning with Motion Planning. arXiv preprint arXiv:2101.04736.
  • [7] Wang, N., Chen, C., & Di Nuovo, A. (2020). A framework of hybrid force/motion skills learning for robots. IEEE Transactions on Cognitive and Developmental Systems.
  • [8] Zeng, C., Chen, X., Wang, N., & Yang, C. (2021). Learning compliant robotic movements based on biomimetic motor adaptation. Robotics and Autonomous Systems, 135, 103668.
  • [9] Liu, R., Zhang, Q., Chen, Y., Wang, J., & Yang, L. (2020). A Biologically Constrained Cerebellar Model With Reinforcement Learning for Robotic Limb Control. IEEE Access, 8, 222199-222210.
  • [10] Tolu, S., Capolei, M. C., Vannucci, L., Laschi, C., Falotico, E., & Hernandez, M. V. (2020). A cerebellum-inspired learning approach for adaptive and anticipatory control. International journal of neural systems, 30(01), 1950028.
  • [11] Zahra, O., Tolu, S., & Navarro-Alarcon, D. (2021). Differential mapping spiking neural network for sensor-based robot control. Bioinspiration & Biomimetics, 16(3), 036008.
  • [12] Shin, D. J. (2020). A Convolutional Neural Network-based Policy Inspired by the Cerebellum.
  • [13] Yang, S., Wang, J., Zhang, N., Deng, B., Pang, Y., & Azghadi, M. R. (2021). CerebelluMorphic: Large-Scale Neuromorphic Model and Architecture for Supervised Motor Learning. IEEE Transactions on Neural Networks and Learning Systems.
  • [14] Parr, T., Limanowski, J., Rawji, V., & Friston, K. (2021). The computational neurology of movement under active inference. Brain.
  • [15] Rajendran, A., Vijayan, A., Medini, C., Nair, B., & Diwakar, S. (2021). Computational modeling of cerebellum granule neuron temporal responses for auditory and visual stimuli. International Journal of Advanced Intelligence Paradigms, 18(3), 356-372.
  • [16] Zhong, S., Zhou, J., & Qiao, H. (2021). Bioinspired Gain-Modulated Recurrent Neural Network for Controlling Musculoskeletal Robot. IEEE Transactions on Neural Networks and Learning Systems.
  • [17] Lobov, S. A., Zharinov, A. I., Makarov, V. A., & Kazantsev, V. B. (2021). Spatial Memory in a Spiking Neural Network with Robot Embodiment. Sensors, 21(8), 2678.
  • [18] Azimirad, V., & Sani, M. F. (2020). Experimental study of reinforcement learning in mobile robots through spiking architecture of thalamo-cortico-thalamic circuitry of mammalian brain. Robotica, 38(9), 1558-1575.
  • [19] Squire, L., Berg, D., Bloom, F. E., Du Lac, S., Ghosh, A., & Spitzer, N. C. (Eds.). (2012). Fundamental neuroscience. Academic Press.
  • [20] Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature neuroscience, 21(9), 1148-1160.
  • [21] Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245-258.
  • [22] Ghosh-Dastidar, S., & Adeli, H. (2009). Spiking neural networks. International journal of neural systems, 19(04), 295-308.
  • [23] Grüning, A., & Bohte, S. M. (2014, April). Spiking neural networks: Principles and challenges. In ESANN.
  • [24] Tieck, J., Schnell, T., Kaiser, J., Mauch, F., Roennau, A., & Dillmann, R. (2019). Generating pointing motions for a humanoid robot by combining motor primitives. Frontiers in neurorobotics, 13, 77.
  • [25] Wang, D., Hu, Y., & Ma, T. (2020). Mobile robot navigation with the combination of supervised learning in cerebellum and reward-based learning in basal ganglia. Cognitive Systems Research, 59, 1-14.
  • [26] Wu, W., Qiao, H., Chen, J., Yin, P., & Li, Y. (2016). Biologically inspired model simulating visual pathways and cerebellum function in human-Achieving visuomotor coordination and high precision movement with learning ability. arXiv preprint arXiv:1603.02351.
  • [27] Zahra, O., Navarro-Alarcon, D., & Tolu, S. (2020). Vision-Based Control for Robots by a Fully Spiking Neural System Relying on Cerebellar Predictive Learning. arXiv preprint arXiv:2011.01641.
  • [28] Zahra, O., Navarro-Alarcon, D., & Tolu, S. (2021). A Neurorobotic Embodiment for Exploring the Dynamical Interactions of a Spiking Cerebellar Model and a Robot Arm During Vision-based Manipulation Tasks. arXiv preprint arXiv:2102.01966.
  • [29] Kalidindi, H. T., Thuruthel, T. G., Laschi, C., & Falotico, E. (2019, April). Cerebellum-inspired approach for adaptive kinematic control of soft robots. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (pp. 684-689). IEEE.
  • [30] Wilson, E. D., Assaf, T., Rossiter, J. M., Dean, P., Porrill, J., Anderson, S. R., & Pearson, M. J. A Multizone Cerebellar Chip for Bioinspired Adaptive Robot.
  • [31] Qiao, H., Chen, J., & Huang, X. (2021). A Survey of Brain-Inspired Intelligent Robots: Integration of Vision, Decision, Motion Control, and Musculoskeletal Systems. IEEE Transactions on Cybernetics.

A COMPUTATIONAL FRAMEWORK OF GOAL DIRECTED VOLUNTARY MOTION GENERATION AND CONTROL LOOP IN HUMANOID ROBOTS

Year 2021, , 13 - 17, 29.06.2021
https://doi.org/10.52876/jcs.935773

Abstract

In this paper, it is aimed to construct a computational framework related to bio-inspired motion generation and control systems for humanoid robots. To acquire natural motion patterns in humanoid robots, behaviors observed from biological motor systems in humans and other mammals should be analyzed in detail. Computational mechanisms are mainly placed on the bio-physical plausible neural structures embodied in different dynamics. The main components of the system are composed of the limbic system, neocortex, cerebellum, brainstem, and spinal cord modules. Internal dynamics of these modules include a nonlinear estimator (e.g. chaotic attractor), memory formation, learning (neural plasticity) procedure. While the proposed novel neuro-cognitive framework is performing goal-directed voluntary motion generation and control tasks, also it estimates the amount of motion errors and computes motion correction signals. By this study, some motion-based central nervous system lesions (e.g. epilepsy, Parkinson, etc.) can be computationally modeled so that impairments of motor control commands are detected. Thus motion disorders can be reconstructed not only in humanoid robots but also in humans via some locomotion equipment.

References

  • [1] Nagabandi, A., Konolige, K., Levine, S., & Kumar, V. (2020, May). Deep dynamics models for learning dexterous manipulation. In Conference on Robot Learning (pp. 1101-1112). PMLR.
  • [2] Arimoto, S. (1995). Fundamental problems of robot control: part II a nonlinear circuit theory towards an understanding of dexterous motions. Robotica, 13(2), 111-122.
  • [3] Mattar, E. (2013). A survey of bio-inspired robotics hands implementation: New directions in dexterous manipulation. Robotics and Autonomous Systems, 61(5), 517-544.
  • [4] Ott, C., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., Borst, C., ... & Hirzinger, G. (2006, December). A humanoid two-arm system for dexterous manipulation. In 2006 6th IEEE-RAS International Conference on Humanoid Robots (pp. 276-283). IEEE.
  • [5] Maekawa, A., Matsubara, S., Wakisaka, S., Uriu, D., Hiyama, A., & Inami, M. (2020, April). Dynamic Motor Skill Synthesis with Human-Machine Mutual Actuation. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-12).
  • [6] Abbatematteo, B., Rosen, E., Tellex, S., & Konidaris, G. (2021). Bootstrapping Motor Skill Learning with Motion Planning. arXiv preprint arXiv:2101.04736.
  • [7] Wang, N., Chen, C., & Di Nuovo, A. (2020). A framework of hybrid force/motion skills learning for robots. IEEE Transactions on Cognitive and Developmental Systems.
  • [8] Zeng, C., Chen, X., Wang, N., & Yang, C. (2021). Learning compliant robotic movements based on biomimetic motor adaptation. Robotics and Autonomous Systems, 135, 103668.
  • [9] Liu, R., Zhang, Q., Chen, Y., Wang, J., & Yang, L. (2020). A Biologically Constrained Cerebellar Model With Reinforcement Learning for Robotic Limb Control. IEEE Access, 8, 222199-222210.
  • [10] Tolu, S., Capolei, M. C., Vannucci, L., Laschi, C., Falotico, E., & Hernandez, M. V. (2020). A cerebellum-inspired learning approach for adaptive and anticipatory control. International journal of neural systems, 30(01), 1950028.
  • [11] Zahra, O., Tolu, S., & Navarro-Alarcon, D. (2021). Differential mapping spiking neural network for sensor-based robot control. Bioinspiration & Biomimetics, 16(3), 036008.
  • [12] Shin, D. J. (2020). A Convolutional Neural Network-based Policy Inspired by the Cerebellum.
  • [13] Yang, S., Wang, J., Zhang, N., Deng, B., Pang, Y., & Azghadi, M. R. (2021). CerebelluMorphic: Large-Scale Neuromorphic Model and Architecture for Supervised Motor Learning. IEEE Transactions on Neural Networks and Learning Systems.
  • [14] Parr, T., Limanowski, J., Rawji, V., & Friston, K. (2021). The computational neurology of movement under active inference. Brain.
  • [15] Rajendran, A., Vijayan, A., Medini, C., Nair, B., & Diwakar, S. (2021). Computational modeling of cerebellum granule neuron temporal responses for auditory and visual stimuli. International Journal of Advanced Intelligence Paradigms, 18(3), 356-372.
  • [16] Zhong, S., Zhou, J., & Qiao, H. (2021). Bioinspired Gain-Modulated Recurrent Neural Network for Controlling Musculoskeletal Robot. IEEE Transactions on Neural Networks and Learning Systems.
  • [17] Lobov, S. A., Zharinov, A. I., Makarov, V. A., & Kazantsev, V. B. (2021). Spatial Memory in a Spiking Neural Network with Robot Embodiment. Sensors, 21(8), 2678.
  • [18] Azimirad, V., & Sani, M. F. (2020). Experimental study of reinforcement learning in mobile robots through spiking architecture of thalamo-cortico-thalamic circuitry of mammalian brain. Robotica, 38(9), 1558-1575.
  • [19] Squire, L., Berg, D., Bloom, F. E., Du Lac, S., Ghosh, A., & Spitzer, N. C. (Eds.). (2012). Fundamental neuroscience. Academic Press.
  • [20] Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature neuroscience, 21(9), 1148-1160.
  • [21] Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245-258.
  • [22] Ghosh-Dastidar, S., & Adeli, H. (2009). Spiking neural networks. International journal of neural systems, 19(04), 295-308.
  • [23] Grüning, A., & Bohte, S. M. (2014, April). Spiking neural networks: Principles and challenges. In ESANN.
  • [24] Tieck, J., Schnell, T., Kaiser, J., Mauch, F., Roennau, A., & Dillmann, R. (2019). Generating pointing motions for a humanoid robot by combining motor primitives. Frontiers in neurorobotics, 13, 77.
  • [25] Wang, D., Hu, Y., & Ma, T. (2020). Mobile robot navigation with the combination of supervised learning in cerebellum and reward-based learning in basal ganglia. Cognitive Systems Research, 59, 1-14.
  • [26] Wu, W., Qiao, H., Chen, J., Yin, P., & Li, Y. (2016). Biologically inspired model simulating visual pathways and cerebellum function in human-Achieving visuomotor coordination and high precision movement with learning ability. arXiv preprint arXiv:1603.02351.
  • [27] Zahra, O., Navarro-Alarcon, D., & Tolu, S. (2020). Vision-Based Control for Robots by a Fully Spiking Neural System Relying on Cerebellar Predictive Learning. arXiv preprint arXiv:2011.01641.
  • [28] Zahra, O., Navarro-Alarcon, D., & Tolu, S. (2021). A Neurorobotic Embodiment for Exploring the Dynamical Interactions of a Spiking Cerebellar Model and a Robot Arm During Vision-based Manipulation Tasks. arXiv preprint arXiv:2102.01966.
  • [29] Kalidindi, H. T., Thuruthel, T. G., Laschi, C., & Falotico, E. (2019, April). Cerebellum-inspired approach for adaptive kinematic control of soft robots. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (pp. 684-689). IEEE.
  • [30] Wilson, E. D., Assaf, T., Rossiter, J. M., Dean, P., Porrill, J., Anderson, S. R., & Pearson, M. J. A Multizone Cerebellar Chip for Bioinspired Adaptive Robot.
  • [31] Qiao, H., Chen, J., & Huang, X. (2021). A Survey of Brain-Inspired Intelligent Robots: Integration of Vision, Decision, Motion Control, and Musculoskeletal Systems. IEEE Transactions on Cybernetics.
There are 31 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Articles
Authors

Evren Dağlarlı 0000-0002-8754-9527

Publication Date June 29, 2021
Published in Issue Year 2021

Cite

APA Dağlarlı, E. (2021). A COMPUTATIONAL FRAMEWORK OF GOAL DIRECTED VOLUNTARY MOTION GENERATION AND CONTROL LOOP IN HUMANOID ROBOTS. The Journal of Cognitive Systems, 6(1), 13-17. https://doi.org/10.52876/jcs.935773