Research Article
BibTex RIS Cite

THE COGNITIVE MODELS USING OSCILLATORY NEURAL NETS

Year 2018, Volume: 3 Issue: 2, 21 - 22, 31.12.2018

Abstract

Oscillatory neural nets needs energy efficient neurons
and synapses in its hardware implementation, as a candidate, Magnetic Tunnel Junctions
(MTJ), which are known energy efficient devices [1-3], can be functioning as a
neuron or synapse in a neural net
. In this work, we have proposed a Phase Locked Loop (PLL) based Oscillatory
Neural Network (ONN) for binary image recognition. The ONN architecture is
proposed and possible design aspects are presented. The response time of the
network may be faster with respect to the operating frequencies of the STO.

References

  • [1] C. M. Liyanagedera, K. Yogendra, K. Roy, D. Fan, “Spin torque nano-oscillator based Oscillatory Neural Network” in Neural Networks (IJCNN), 2016 International Joint Conference on. IEEE, 2016, pp. 1387–1394.
  • [2] K. Yogendra, D. Fan, K. Roy, “Coupled spin torque nano oscillators for low power neural computation”, IEEE Transactions on Magnetics, Vol.51, No.10, 2015, pp.4 003 909–4 003 909.
  • [3] A. Sengupta, P. Panda, P. Wijesinghe, Y. Kim, K. Roy, (2016). “Magnetic tunnel junction mimics stochastic cortical spiking neurons”, Scientific Reports, Vol.6, 2016, p.300039.
  • [4] F. C. Hoppensteadt, E. M. Izhikevich, “Pattern recognition via synchronization in phase-locked loop neural networks” IEEE Transactions on Neural Networks, Vol.11, No.3, 2000, pp.734-738.
  • [5] D. E. Nikonov, G. Csaba, W. Porod, T. Shibata, D. Voils and et. al.,D, “Coupled-Oscillator Associative Memory Array Operation for Pattern Recognition”, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, Vol.1, 2015, pp.85-93.
  • [6] T. C. Jackson, T. A. A. Sharma, J. A. Bain, J. A. Weldon, L. Pileggi, “Oscillatory neural networks based on TMO nano-oscillators and multi-level RRAM cells”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol.5, No.2, 2015, pp.230-241.
  • [7] D. Terman, D. L. Wang, “Global competition and local cooperation in a network of neural oscillators”, Physica D: Nonlinear Phenomena, Vol.81, No.1-2, 1995, pp.148-176.
  • [8] J. Cosp, J. Madrenas, “Scene Segmentation Using Neuromorphic Oscillatory Networks”, IEEE Transactions on Neural Networks, Vol.14, No.5, 2003, pp.1278-1296.
  • [9] D. Wang, D. Terman, “Locally Excitatory Globally Inhibitory Oscillator Networks”, IEEE Transactions on Neural Networks, Vol.6, No.1, 1995, pp.283,286.
  • [10] S. Tamaru, H. Kubota, K. Yakushiji, S. Yuasa, A. Fukushima, “Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop”, Scientific Reports, Vol.5, 2015, p.18134.
  • [11] J. C. Slonczewski, “Current-driven excitation of magnetic multilayers”, Journal of Magnetism and Magnetic Materials, Vol.159, No.1-2, 1996, pp.L1-L7.
  • [12] X. Fong, S. H., Choday, P. Georgios, C. Augustine, K. Roy, Purdue Nanoelectronics Research Laboratory Magnetic Tunnel Junction Model, 2014, https://doi.org/doi:/10.4231/D33R0PV04.
Year 2018, Volume: 3 Issue: 2, 21 - 22, 31.12.2018

Abstract

References

  • [1] C. M. Liyanagedera, K. Yogendra, K. Roy, D. Fan, “Spin torque nano-oscillator based Oscillatory Neural Network” in Neural Networks (IJCNN), 2016 International Joint Conference on. IEEE, 2016, pp. 1387–1394.
  • [2] K. Yogendra, D. Fan, K. Roy, “Coupled spin torque nano oscillators for low power neural computation”, IEEE Transactions on Magnetics, Vol.51, No.10, 2015, pp.4 003 909–4 003 909.
  • [3] A. Sengupta, P. Panda, P. Wijesinghe, Y. Kim, K. Roy, (2016). “Magnetic tunnel junction mimics stochastic cortical spiking neurons”, Scientific Reports, Vol.6, 2016, p.300039.
  • [4] F. C. Hoppensteadt, E. M. Izhikevich, “Pattern recognition via synchronization in phase-locked loop neural networks” IEEE Transactions on Neural Networks, Vol.11, No.3, 2000, pp.734-738.
  • [5] D. E. Nikonov, G. Csaba, W. Porod, T. Shibata, D. Voils and et. al.,D, “Coupled-Oscillator Associative Memory Array Operation for Pattern Recognition”, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, Vol.1, 2015, pp.85-93.
  • [6] T. C. Jackson, T. A. A. Sharma, J. A. Bain, J. A. Weldon, L. Pileggi, “Oscillatory neural networks based on TMO nano-oscillators and multi-level RRAM cells”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol.5, No.2, 2015, pp.230-241.
  • [7] D. Terman, D. L. Wang, “Global competition and local cooperation in a network of neural oscillators”, Physica D: Nonlinear Phenomena, Vol.81, No.1-2, 1995, pp.148-176.
  • [8] J. Cosp, J. Madrenas, “Scene Segmentation Using Neuromorphic Oscillatory Networks”, IEEE Transactions on Neural Networks, Vol.14, No.5, 2003, pp.1278-1296.
  • [9] D. Wang, D. Terman, “Locally Excitatory Globally Inhibitory Oscillator Networks”, IEEE Transactions on Neural Networks, Vol.6, No.1, 1995, pp.283,286.
  • [10] S. Tamaru, H. Kubota, K. Yakushiji, S. Yuasa, A. Fukushima, “Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop”, Scientific Reports, Vol.5, 2015, p.18134.
  • [11] J. C. Slonczewski, “Current-driven excitation of magnetic multilayers”, Journal of Magnetism and Magnetic Materials, Vol.159, No.1-2, 1996, pp.L1-L7.
  • [12] X. Fong, S. H., Choday, P. Georgios, C. Augustine, K. Roy, Purdue Nanoelectronics Research Laboratory Magnetic Tunnel Junction Model, 2014, https://doi.org/doi:/10.4231/D33R0PV04.
There are 12 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mesut Atasoyu This is me 0000-0002-0029-7436

Serdar Ozoguz 0000-0002-0915-1804

Publication Date December 31, 2018
Published in Issue Year 2018 Volume: 3 Issue: 2

Cite

APA Atasoyu, M., & Ozoguz, S. (2018). THE COGNITIVE MODELS USING OSCILLATORY NEURAL NETS. The Journal of Cognitive Systems, 3(2), 21-22.