Research Article
BibTex RIS Cite
Year 2022, , 291 - 312, 30.06.2022
https://doi.org/10.17478/jegys.1113590

Abstract

References

  • Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Çorlu, M. S., Öner, T., & Özdemir, S. (2015). STEM eğitimi Türkiye raporu. İstanbul: Scala Basım.
  • Allen, A.(2016). Do not fear STEM—You already teach it. School-Age/After School Exchange, September/October 56-59. Ayvacı, H.Ş.(2010). Okul öncesi dönem çocuklarının bilimsel süreç becerilerini kullanma yeterliliklerini geliştirmeye yönelik pilot bir çalışma. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 4(2), 1-24.
  • Breiner, J.M., Harkness, S.S., Johnson, C.C. & Koehler, C.M. (2012). What is STEM? Discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112: 3-11. https://doi.org/10.1111/j.1949-8594.2011.00109.x
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA Press.
  • Carrier, S. J. & Grifenhagen, J.F.(2019): Academic vocabulary support for elementary science preservice teachers, Journal of Science Teacher Education, DOI: 10.1080/1046560X.2019.1666631
  • Carrier, S. J.(2013). Elementary preservice teachers’ science vocabulary: Knowledge and application. Journal of Science Teacher Education, 24(2), 405-425. DOI: 10.1007/s10972-012-9270-7
  • Carrier, S.J. (2009). The effects of outdoor science lessons with elementary school students on preservice teachers' self-efficacy. Journal of Elementary Science Education, 21(2), 35-48.
  • Çolakoğlu, M. H.,& Gökben, A. G.(2017). Türkiye’de eğitim fakültelerinde FETEMM (STEM) çalışmaları. İnformal Ortamlarda Araştırmalar Dergisi, 2(2), 46-69.
  • Çorlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM education: implications for educating our teachers for the age of innovation. Education and Science, 39(171), 74-85.
  • Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Boston, MA: Pearson Education.
  • Creswell, J. W. & Plano Clark, V. L. (2007). Designing and conducting mixed-method research. London: Sage Publications. Dönmez Usta, N. ve Ültay, N. (2015). Okul öncesi öğretmen adaylarının “kimya” metaforlarının karşılaştırılması üzerine bir çalışma. Karadeniz Sosyal Bilimler Dergisi, 7(Hüseyin Hüsnü Tekışık Özel Sayısı-1), 163-177.
  • Duit, R. & Treagust, D.F.(2003). Conceptual change: A powerful framework for improving science teaching and learning, International Journal of Science Education, 25(6), 671-688, DOI: 10.1080/09500690305016
  • Early Childhood STEM Working Group. (2017). Early STEM matters: Providing high-quality STEM experiences for all young learners. Chicago (IL): UChicago STEM Education and Erikson Institute.
  • English, L. D (2016). STEM education K-12: Perspectives on integration. English International Journal of STEM Education 3 (3). DOI 10.1186/s40594-016-0036-1
  • Eroğlu, S., & Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin stem temelli ders etkinlikleri hakkındaki görüşleri. Eğitimde Nitel Araştırmalar Dergisi- Journal of Qualitative Research in Education, 4(3), 43-67.
  • Eshach, H. (2003). Inquiry-events as a tool for changing science teaching efficacy belief of kindergarten and elementary school teachers. Journal of Science Education and Technology, 12(4), 495-501.
  • Fisher, D., & Frey, N.(2014).Content area vocabulary learning. The Reading Teacher, 67(8), 594–599. doi:10.1002/trtr.2014.67.issue-8.
  • Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 82(3), 300–329. doi:10.3102/0034654312457206.
  • Gagnon, R.J. & Sandoval, A. (2019). Pre-college STEM camps as developmental context: Mediational relations between gender, career decidedness, socio-emotional development, and engagement, Children and Youth Services Review, 108 (2020) pp. 1-9. DOI: 10.1016/j.childyouth.2019.104584
  • Garner, P. W., Gabitova, N., Gupta, A., & Wood, T. (2018). Innovations in science education: infusing social-emotional principles into early STEM learning. Cultural Studies of Science Education, 13(4), 889-903. doi:10.1007/s11422-017-9826-0
  • Gelman, R. & Brenneman, K. (2012). Classrooms as learning labs. In N. Stein ve S. Raudenbush (Eds.), Developmental science goes to school. New York, NY: Routledge. 706, 113–126.
  • Gonzalez, H. B. ve Kuenzi, J. J. (2012). Science, technology, engineering and mathematics (STEM) education: A Primer. Congressional Research Service. https://www.fas.org/sgp/crs/misc/R42642.pdf sayfasından erilişdi. (ET:12.01.2017).
  • Greenfield, D. B., Jirout, J., Dominguez, X., Greenberg, A., Maier, M., & Fuccillo, J. (2009). Science in the preschool classroom: A programmatic research agenda to improve science readiness. Early Education and Development, 20, 238–264.
  • Griffith, G., & Scharmann, L. (2008). Initial impacts of No Child Left Behind on elementary science education. Journal of Elementary Science Education, 20(3), 35–48.
  • Harman, G , Çökelez, A . (2017). Okul öncesi öğretmen adaylarının kimya, fizik ve biyoloji kavramlarına yönelik metaforik algıları. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi , 46(46), 75-95 . DOI: 10.15285/maruaebd.280029
  • Harmon, J., Hedrick, W., & Wood, K. (2005). Research on vocabulary instruction in the content areas:Implications for struggling readers. Reading & Writing Quarterly, 21, 261–280
  • Jones, I., Lake, V. E., & Dagli, U. (2005). Integration of science and mathematics methods and preservice teacher's understanding of constructivism. Journal of Early Childhood Teacher Education, 25, 165-172.
  • Katz, L. (2010, May). STEM in the early years. Paper presented at the SEED 2010: STEM in early education and development conference. Retrieved from http://ecrp.uiuc.edu/beyond/seed/.
  • Kayumova, S., & Tippins, D. (2016). Toward re-thinking science education in terms of affective practices: Reflections from the field. Cultural Studies of Science Education, 1–9. doi:10.1007/s11422-015-9695-3.
  • Kildan, O. & Pektaş, M. (2009). Erken çocukluk döneminde fen ve doğa ile ilgili konuların öğretilmesinde okulöncesi öğretmenlerinin görüşlerinin belirlenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 10(1).
  • Leuchter, M., Saalbach, H., & Hardy, I. (2014). Designing science learning in the first years of schooling. An intervention study with sequenced learning materials on the topic of ‘floating and sinking’. International Journal of Science Education, 36(10), 17511771. doi:10.1080/09500693.2013.878482.
  • McMurrer, J. (2008). Instructional time in elementary schools: A closer look at changes for specific subjects. Washington, DC: Center on Education Policy.
  • Miles, M. B., & Huberman, M.. (1994). Qualitative Data Analysis: A Sourcebook of New Methods. 2d Edition. Beverly Hills, CA: Sage Publications.
  • National Research Council (NRC). (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering and mathematics. Washington, DC: The National Academic Press.
  • Nilsson, P., & Van Driel, J. (2010). Teaching together and learning together: Primary science student teachers’ and their mentors’ joint teaching and learning in the primary classroom. Teaching and Teacher Education, 26 (6), 1309–1318. DOİ:10.1016/j.tate.2010.03.009
  • Park, M., Dimitrow, D. M., Patterson, L. G. & Park, D.Y (2017). Early childhood teachers’ beliefs about readiness for teaching science, technology, engineering, and mathematics. Journal of Early Childhood Research, 15(3) 275–291.
  • Pecore, J.L.,Kirchgessner, M.L., & Carruth, L.L.(2013). Changes in science content knowledge and attitudes toward science teaching of educators attending a zoo-based neuroscience professional development, The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 86(6), 238-245, DOI: 10.1080/00098655.2013.826527
  • Putman, S. M. (2012). Investigating teacher efficacy: Comparing preservice and inservice teachers with different levels of experience. Action in Teacher Education, 34(1), 26-40.
  • Rowe, M. L., & Goldin-Meadow, S. (2009). Differences in early gesture explain SES disparities in child vocabulary size at school entry. Science, 323(5916), 951–953.
  • Santau, A.O., Maerten-Rivera J. L., Bovis, S., & Orend, J. (2014). A mile wide or an ınch deep? Improving elementary preservice teachers’ science content knowledge within the context of a science methods course, Journal of Science Teacher Education, 25(8), 953-976, DOI: 10.1007/s10972-014-9402-3.
  • Seefeldt, C., Galper, A., & Jones, I. (2011). Active experiences for active children: Science. Columbus, OH: Pearson. Simsar, A. (2016). Turkish Preservice Early Childhood Teachers' Science Teaching Self Efficacy Beliefs. Retrieved from http://purl.flvc.org/fsu/fd/FSU_FA2016_SIMSAR_fsu_0071E_13558.
  • Soodak, L. C., Podell, D. M., & Lehman, L. R. (1998). Teacher, student, and school attributes as predictors of teachers' responses to inclusion. The Journal of Special Education, 31(4), 480-497.
  • Soprano, K., & Young, L. L. (2012). Inquiring into my science teaching through action research: A case study on one preservice teacher's inquiry-based science teaching and self-efficacy. International Journal of Science and Mathematics Education, 11(6), 1351– 1368.
  • Starr, C.R., Hunter, L., Dunkin, R., Honig, S., Palomino, R., and Leaper, C. (2020). Engaging in science practices in classrooms predicts increases in undergraduates' STEM motivation, identity, and achievement: A short‐term longitudinal study. J Res Sci Teach. 2020; 1– 26. https://doi.org/10.1002/tea.21623.
  • Strong, M. G. (2013). Developing elementary math and science process skills through engineering design instruction (Order No. 1537547). Available from ProQuest Dissertations & Theses Global. (1364887346). Retrieved from https://search.proquest.com/docview/1364887346?accountid=86205.
  • Suri, H. (2011). Purposeful sampling in qualitative research synthesis, Qualitative Research Journal, 11(2), 63-75. DOI 10.3316/QRJ1102063.
  • Tashakkori, A., & Creswell, J.W. (2007). The new era of mixed methods. Journal of Mixed Methods [Editorial]. Journal of Mixed Methods Research, 1(1), 3-7. View Article: DOI: 10.1177/2345678906293042.
  • Torres-Crospe, M. N., Kraatz, K. ve Pallansch, L. (2014). From fearing STEM to playing with it: The natural integration of STEM into the preschool classroom. STATE Journal, 23(2), 8-16.
  • Trundle, K., & Saçkes, M. (2012). Science and early education. In R. Pianta (Ed.), Handbook of early childhood education (pp. 240-258). New York, NY: Guilford.
  • Trygstad, P. J. (2013). 2012 National Survey of Science and Mathematics Education: Status of elementary school science. Chapel Hill, NC: Horizon Research.
  • Ültay, N. ve Ültay. E.(2015). Okul öncesi öğretmen adaylarının bazı fen kavramları hakkındaki kavramsal bilgilerinin kesitsel olarak incelenmesi. Uluslararası Sosyal Araştırmalar Dergisi, 8(41), 1046-1051.
  • Ültay, N., Can, M. ve Ültay, E. (2014). Okul öncesi öğretmen adaylarının ısı-sıcaklık konusundaki kavramsal bilgilerinin belirlenmesi. XI. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, 11-14 Eylül. Çukurova Üniversitesi, Adana.
  • Ünal, S., Çalık, M., Ayas, A., and Coll, R.K. (2006). A review of chemical bonding studies: Needs, aims, methods of exploring students’ conceptions, general knowledge claims and students’ alternative conceptions. Research in Science & Technological Education, 24(2), 141-172.
  • Uyanık-Balat, G. ve Günşen, G. (2017). Okul öncesi dönemde STEM yaklaşımı. Akademik Sosyal Araştırmalar Dergisi, 5(42), 337-348.
  • Worth, K. (2010). Science in early childhood classrooms: Content and process. http://ecrp.illinois.edu/beyond/seed/worth.html.
  • Zeichner, K. (2002). Beyond traditional structures of student teaching. Teacher Education Quarterly,29(2), 59–64.

Preservice early childhood teachers’ science conceptual changes with STEM-based science activities

Year 2022, , 291 - 312, 30.06.2022
https://doi.org/10.17478/jegys.1113590

Abstract

Developing positive attitudes towards science and scientific process skills at an early age enables children to become more successful in the fields of science. However, in order to provide this education in early years, it is necessary to use scientific concepts correctly and appropriately by teachers and parents. This study investigated the effects of STEM-based science education practices on the science conceptual changes of preservice teachers. One-phase experimental embedded pattern design, one of the mixed-method research, was used in the study. The study group consisted of 20 (16 women, 4 men) preservice teachers (PST) who were enrolled in an undergraduate course titled Science Activities for Preschoolers. In addition, data were collected from the Science Concepts Form, STEM-based science activities plans, and application videos. The study results showed that STEM-based science activities positively impacted the science-related conceptual changes of preservice teachers. Especially, preservice teachers’ conceptual changes were increased in stone and soil, living and non-living thnigs, and force, motion and balances concepts. Furthermore, it has been determined that this program supported teachers in correcting misconceptions in different science subjects (ex. Earth and space science, life science, physical science) and using concepts correctly. The study results suggested that STEM-based science education practicess are important for teacher’s science understanding and using in classroom.

References

  • Akgündüz, D., Aydeniz, M., Çakmakçı, G., Çavaş, B., Çorlu, M. S., Öner, T., & Özdemir, S. (2015). STEM eğitimi Türkiye raporu. İstanbul: Scala Basım.
  • Allen, A.(2016). Do not fear STEM—You already teach it. School-Age/After School Exchange, September/October 56-59. Ayvacı, H.Ş.(2010). Okul öncesi dönem çocuklarının bilimsel süreç becerilerini kullanma yeterliliklerini geliştirmeye yönelik pilot bir çalışma. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 4(2), 1-24.
  • Breiner, J.M., Harkness, S.S., Johnson, C.C. & Koehler, C.M. (2012). What is STEM? Discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112: 3-11. https://doi.org/10.1111/j.1949-8594.2011.00109.x
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA Press.
  • Carrier, S. J. & Grifenhagen, J.F.(2019): Academic vocabulary support for elementary science preservice teachers, Journal of Science Teacher Education, DOI: 10.1080/1046560X.2019.1666631
  • Carrier, S. J.(2013). Elementary preservice teachers’ science vocabulary: Knowledge and application. Journal of Science Teacher Education, 24(2), 405-425. DOI: 10.1007/s10972-012-9270-7
  • Carrier, S.J. (2009). The effects of outdoor science lessons with elementary school students on preservice teachers' self-efficacy. Journal of Elementary Science Education, 21(2), 35-48.
  • Çolakoğlu, M. H.,& Gökben, A. G.(2017). Türkiye’de eğitim fakültelerinde FETEMM (STEM) çalışmaları. İnformal Ortamlarda Araştırmalar Dergisi, 2(2), 46-69.
  • Çorlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM education: implications for educating our teachers for the age of innovation. Education and Science, 39(171), 74-85.
  • Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Boston, MA: Pearson Education.
  • Creswell, J. W. & Plano Clark, V. L. (2007). Designing and conducting mixed-method research. London: Sage Publications. Dönmez Usta, N. ve Ültay, N. (2015). Okul öncesi öğretmen adaylarının “kimya” metaforlarının karşılaştırılması üzerine bir çalışma. Karadeniz Sosyal Bilimler Dergisi, 7(Hüseyin Hüsnü Tekışık Özel Sayısı-1), 163-177.
  • Duit, R. & Treagust, D.F.(2003). Conceptual change: A powerful framework for improving science teaching and learning, International Journal of Science Education, 25(6), 671-688, DOI: 10.1080/09500690305016
  • Early Childhood STEM Working Group. (2017). Early STEM matters: Providing high-quality STEM experiences for all young learners. Chicago (IL): UChicago STEM Education and Erikson Institute.
  • English, L. D (2016). STEM education K-12: Perspectives on integration. English International Journal of STEM Education 3 (3). DOI 10.1186/s40594-016-0036-1
  • Eroğlu, S., & Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin stem temelli ders etkinlikleri hakkındaki görüşleri. Eğitimde Nitel Araştırmalar Dergisi- Journal of Qualitative Research in Education, 4(3), 43-67.
  • Eshach, H. (2003). Inquiry-events as a tool for changing science teaching efficacy belief of kindergarten and elementary school teachers. Journal of Science Education and Technology, 12(4), 495-501.
  • Fisher, D., & Frey, N.(2014).Content area vocabulary learning. The Reading Teacher, 67(8), 594–599. doi:10.1002/trtr.2014.67.issue-8.
  • Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 82(3), 300–329. doi:10.3102/0034654312457206.
  • Gagnon, R.J. & Sandoval, A. (2019). Pre-college STEM camps as developmental context: Mediational relations between gender, career decidedness, socio-emotional development, and engagement, Children and Youth Services Review, 108 (2020) pp. 1-9. DOI: 10.1016/j.childyouth.2019.104584
  • Garner, P. W., Gabitova, N., Gupta, A., & Wood, T. (2018). Innovations in science education: infusing social-emotional principles into early STEM learning. Cultural Studies of Science Education, 13(4), 889-903. doi:10.1007/s11422-017-9826-0
  • Gelman, R. & Brenneman, K. (2012). Classrooms as learning labs. In N. Stein ve S. Raudenbush (Eds.), Developmental science goes to school. New York, NY: Routledge. 706, 113–126.
  • Gonzalez, H. B. ve Kuenzi, J. J. (2012). Science, technology, engineering and mathematics (STEM) education: A Primer. Congressional Research Service. https://www.fas.org/sgp/crs/misc/R42642.pdf sayfasından erilişdi. (ET:12.01.2017).
  • Greenfield, D. B., Jirout, J., Dominguez, X., Greenberg, A., Maier, M., & Fuccillo, J. (2009). Science in the preschool classroom: A programmatic research agenda to improve science readiness. Early Education and Development, 20, 238–264.
  • Griffith, G., & Scharmann, L. (2008). Initial impacts of No Child Left Behind on elementary science education. Journal of Elementary Science Education, 20(3), 35–48.
  • Harman, G , Çökelez, A . (2017). Okul öncesi öğretmen adaylarının kimya, fizik ve biyoloji kavramlarına yönelik metaforik algıları. Marmara Üniversitesi Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi , 46(46), 75-95 . DOI: 10.15285/maruaebd.280029
  • Harmon, J., Hedrick, W., & Wood, K. (2005). Research on vocabulary instruction in the content areas:Implications for struggling readers. Reading & Writing Quarterly, 21, 261–280
  • Jones, I., Lake, V. E., & Dagli, U. (2005). Integration of science and mathematics methods and preservice teacher's understanding of constructivism. Journal of Early Childhood Teacher Education, 25, 165-172.
  • Katz, L. (2010, May). STEM in the early years. Paper presented at the SEED 2010: STEM in early education and development conference. Retrieved from http://ecrp.uiuc.edu/beyond/seed/.
  • Kayumova, S., & Tippins, D. (2016). Toward re-thinking science education in terms of affective practices: Reflections from the field. Cultural Studies of Science Education, 1–9. doi:10.1007/s11422-015-9695-3.
  • Kildan, O. & Pektaş, M. (2009). Erken çocukluk döneminde fen ve doğa ile ilgili konuların öğretilmesinde okulöncesi öğretmenlerinin görüşlerinin belirlenmesi. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 10(1).
  • Leuchter, M., Saalbach, H., & Hardy, I. (2014). Designing science learning in the first years of schooling. An intervention study with sequenced learning materials on the topic of ‘floating and sinking’. International Journal of Science Education, 36(10), 17511771. doi:10.1080/09500693.2013.878482.
  • McMurrer, J. (2008). Instructional time in elementary schools: A closer look at changes for specific subjects. Washington, DC: Center on Education Policy.
  • Miles, M. B., & Huberman, M.. (1994). Qualitative Data Analysis: A Sourcebook of New Methods. 2d Edition. Beverly Hills, CA: Sage Publications.
  • National Research Council (NRC). (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering and mathematics. Washington, DC: The National Academic Press.
  • Nilsson, P., & Van Driel, J. (2010). Teaching together and learning together: Primary science student teachers’ and their mentors’ joint teaching and learning in the primary classroom. Teaching and Teacher Education, 26 (6), 1309–1318. DOİ:10.1016/j.tate.2010.03.009
  • Park, M., Dimitrow, D. M., Patterson, L. G. & Park, D.Y (2017). Early childhood teachers’ beliefs about readiness for teaching science, technology, engineering, and mathematics. Journal of Early Childhood Research, 15(3) 275–291.
  • Pecore, J.L.,Kirchgessner, M.L., & Carruth, L.L.(2013). Changes in science content knowledge and attitudes toward science teaching of educators attending a zoo-based neuroscience professional development, The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 86(6), 238-245, DOI: 10.1080/00098655.2013.826527
  • Putman, S. M. (2012). Investigating teacher efficacy: Comparing preservice and inservice teachers with different levels of experience. Action in Teacher Education, 34(1), 26-40.
  • Rowe, M. L., & Goldin-Meadow, S. (2009). Differences in early gesture explain SES disparities in child vocabulary size at school entry. Science, 323(5916), 951–953.
  • Santau, A.O., Maerten-Rivera J. L., Bovis, S., & Orend, J. (2014). A mile wide or an ınch deep? Improving elementary preservice teachers’ science content knowledge within the context of a science methods course, Journal of Science Teacher Education, 25(8), 953-976, DOI: 10.1007/s10972-014-9402-3.
  • Seefeldt, C., Galper, A., & Jones, I. (2011). Active experiences for active children: Science. Columbus, OH: Pearson. Simsar, A. (2016). Turkish Preservice Early Childhood Teachers' Science Teaching Self Efficacy Beliefs. Retrieved from http://purl.flvc.org/fsu/fd/FSU_FA2016_SIMSAR_fsu_0071E_13558.
  • Soodak, L. C., Podell, D. M., & Lehman, L. R. (1998). Teacher, student, and school attributes as predictors of teachers' responses to inclusion. The Journal of Special Education, 31(4), 480-497.
  • Soprano, K., & Young, L. L. (2012). Inquiring into my science teaching through action research: A case study on one preservice teacher's inquiry-based science teaching and self-efficacy. International Journal of Science and Mathematics Education, 11(6), 1351– 1368.
  • Starr, C.R., Hunter, L., Dunkin, R., Honig, S., Palomino, R., and Leaper, C. (2020). Engaging in science practices in classrooms predicts increases in undergraduates' STEM motivation, identity, and achievement: A short‐term longitudinal study. J Res Sci Teach. 2020; 1– 26. https://doi.org/10.1002/tea.21623.
  • Strong, M. G. (2013). Developing elementary math and science process skills through engineering design instruction (Order No. 1537547). Available from ProQuest Dissertations & Theses Global. (1364887346). Retrieved from https://search.proquest.com/docview/1364887346?accountid=86205.
  • Suri, H. (2011). Purposeful sampling in qualitative research synthesis, Qualitative Research Journal, 11(2), 63-75. DOI 10.3316/QRJ1102063.
  • Tashakkori, A., & Creswell, J.W. (2007). The new era of mixed methods. Journal of Mixed Methods [Editorial]. Journal of Mixed Methods Research, 1(1), 3-7. View Article: DOI: 10.1177/2345678906293042.
  • Torres-Crospe, M. N., Kraatz, K. ve Pallansch, L. (2014). From fearing STEM to playing with it: The natural integration of STEM into the preschool classroom. STATE Journal, 23(2), 8-16.
  • Trundle, K., & Saçkes, M. (2012). Science and early education. In R. Pianta (Ed.), Handbook of early childhood education (pp. 240-258). New York, NY: Guilford.
  • Trygstad, P. J. (2013). 2012 National Survey of Science and Mathematics Education: Status of elementary school science. Chapel Hill, NC: Horizon Research.
  • Ültay, N. ve Ültay. E.(2015). Okul öncesi öğretmen adaylarının bazı fen kavramları hakkındaki kavramsal bilgilerinin kesitsel olarak incelenmesi. Uluslararası Sosyal Araştırmalar Dergisi, 8(41), 1046-1051.
  • Ültay, N., Can, M. ve Ültay, E. (2014). Okul öncesi öğretmen adaylarının ısı-sıcaklık konusundaki kavramsal bilgilerinin belirlenmesi. XI. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, 11-14 Eylül. Çukurova Üniversitesi, Adana.
  • Ünal, S., Çalık, M., Ayas, A., and Coll, R.K. (2006). A review of chemical bonding studies: Needs, aims, methods of exploring students’ conceptions, general knowledge claims and students’ alternative conceptions. Research in Science & Technological Education, 24(2), 141-172.
  • Uyanık-Balat, G. ve Günşen, G. (2017). Okul öncesi dönemde STEM yaklaşımı. Akademik Sosyal Araştırmalar Dergisi, 5(42), 337-348.
  • Worth, K. (2010). Science in early childhood classrooms: Content and process. http://ecrp.illinois.edu/beyond/seed/worth.html.
  • Zeichner, K. (2002). Beyond traditional structures of student teaching. Teacher Education Quarterly,29(2), 59–64.
There are 56 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section STEM Education
Authors

Ahmet Simsar 0000-0002-4335-8788

Ithel Jones 0000-0002-0690-3070

Durmuş Burak 0000-0003-3310-1505

Publication Date June 30, 2022
Published in Issue Year 2022

Cite

APA Simsar, A., Jones, I., & Burak, D. (2022). Preservice early childhood teachers’ science conceptual changes with STEM-based science activities. Journal for the Education of Gifted Young Scientists, 10(2), 291-312. https://doi.org/10.17478/jegys.1113590
AMA Simsar A, Jones I, Burak D. Preservice early childhood teachers’ science conceptual changes with STEM-based science activities. JEGYS. June 2022;10(2):291-312. doi:10.17478/jegys.1113590
Chicago Simsar, Ahmet, Ithel Jones, and Durmuş Burak. “Preservice Early Childhood teachers’ Science Conceptual Changes With STEM-Based Science Activities”. Journal for the Education of Gifted Young Scientists 10, no. 2 (June 2022): 291-312. https://doi.org/10.17478/jegys.1113590.
EndNote Simsar A, Jones I, Burak D (June 1, 2022) Preservice early childhood teachers’ science conceptual changes with STEM-based science activities. Journal for the Education of Gifted Young Scientists 10 2 291–312.
IEEE A. Simsar, I. Jones, and D. Burak, “Preservice early childhood teachers’ science conceptual changes with STEM-based science activities”, JEGYS, vol. 10, no. 2, pp. 291–312, 2022, doi: 10.17478/jegys.1113590.
ISNAD Simsar, Ahmet et al. “Preservice Early Childhood teachers’ Science Conceptual Changes With STEM-Based Science Activities”. Journal for the Education of Gifted Young Scientists 10/2 (June 2022), 291-312. https://doi.org/10.17478/jegys.1113590.
JAMA Simsar A, Jones I, Burak D. Preservice early childhood teachers’ science conceptual changes with STEM-based science activities. JEGYS. 2022;10:291–312.
MLA Simsar, Ahmet et al. “Preservice Early Childhood teachers’ Science Conceptual Changes With STEM-Based Science Activities”. Journal for the Education of Gifted Young Scientists, vol. 10, no. 2, 2022, pp. 291-12, doi:10.17478/jegys.1113590.
Vancouver Simsar A, Jones I, Burak D. Preservice early childhood teachers’ science conceptual changes with STEM-based science activities. JEGYS. 2022;10(2):291-312.
By introducing the concept of the "Gifted Young Scientist," JEGYS has initiated a new research trend at the intersection of science-field education and gifted education.