Research Article
BibTex RIS Cite
Year 2019, Volume: 7 Issue: 3, 747 - 775, 15.09.2019
https://doi.org/10.17478/jegys.587203

Abstract

References

  • Aizikovitsh-Udi, E., & Cheng, D. (2015). Developing critical thinking skills from dispositions to abilities: Mathematics education from early childhood to high school. Creative Education, 6(1), 455-462. http://dx.doi.org/10.4236/ce.2015.64045
  • Almeida, L. S., Prietob, L. P., Ferrando, M., Oliveira, E., & Ferrandiz, C. (2017). Torrance Test of Creative Thinking: The question of its construct validity. Journal of Innovative Science Education, 3(1), 53-58. http://dx.doi.org/10.1016/j.tsc.2008.03.003
  • Apino, E., & Retnawati, H. (2017). Developing instructional design to improve mathematical higher order thinking skills of students. Journal of Physics: Conference Series, 812, 1-8. http://dx.doi.org/10.1088/1742-6596/812/1/012100
  • Baily, C., Ryan, Q. X., Astolfi, C., & Pollock, S. J. (2017). Conceptual assessment tool for advanced undergraduate electrodynamics. Physical Review Physics Education Research, 13(2), 020113. http://dx.doi.org/10.1103/PhysRevPhysEducRes.13.020113
  • Barniol, P., & Zavala, G. (2016). Mechanical waves conceptual survey: Its modification and conversion to a standard multiple-choice test. Physical Review Physics Education Research, 12(1), 010107. http://dx.doi.org/10.1103/PhysRevPhysEducRes.12.010107
  • Barrow, R. (2015). Understanding skills: Thinking, feeling, and caring 1st edition. London: Routledge. https://doi.org/10.4324/9781315678276
  • Bates, S. P., & Galloway, R. K., Riise, J., & Homer, D. (2014). Assessing the quality of a student-generated question repository. Physical Review Physics Education Research, 10(2), 020105. http://dx.doi.org/10.1103/PhysRevSTPER.10.020105
  • Birgili, B. (2015). Creative and critical thinking skills in problem-based learning environments. Journal of Gifted Education and Creativity, 2(2), 71-80. http://dx.doi.org/10.18200/JGEDC.2015214253
  • Caballero, M. D., Doughty, L., Turnbull, A. M., Pepper, R. E., & Pollock, S. J. (2017). Assessing learning outcomes in middle-division classical mechanics: The Colorado classical mechanics and math methods instrument. Physical Review Physics Education Research, 13(1), 010118, http://dx.doi.org/10.1103/PhysRevPhysEducRes.13.010118
  • Chasteen, S. V., Pepper, R. E., Caballero, M. D., Pollock, S. J., & Perkins, K. K. (2012). Colorado Upper-Division Electrostatics diagnostic: A conceptual assessment for the junior level. Physical Review Physics Education Research. 8(2), 020108. http://dx.doi.org/10.1103/PhysRevSTPER.8.020108
  • Collins, R. (2014). Skills for the 21st Century: Teaching higher-order thinking. Curriculum & Leadership Journal, 12(14), 1-7. Retrieved from http://www.curriculum.edu.au/leader/teaching_higher_order_thinking,37431.html?issueI
  • Ding, L. (2014). Seeking missing pieces in science concept assessments: Reevaluating the brief electricity and magnetism assessment through rasch analysis. Physical Review Physics Education Research, 10(1), 010105. http://dx.doi.org/10.1103/PhysRevSTPER.10.010105
  • Docktor, J. L., Dornfeld, J., Frodermann, E., Heller, K., & Hsu, L. (2016). Assessing student written problem solutions: A problem-solving rubric with application to introductory physics. Physical Review Physics Education Research, 12(1), 010130. http://dx.doi.org/10.1103/PhysRevPhysEducRes.12.01013
  • Efendi, R. (2010). Kemampuan fisika siswa indonesia dalam TIMSS. Prosiding Seminar Nasional Fisika 2010, ISBN: 978-979-98010-6-7.
  • Eshach, H. (2014). Development of a student centered instrument to assess middle school students’ conceptual understanding of sound. Physical Review Physics Education Research, 10(1), 010102. http://dx.doi.org/10.1103/PhysRevSTPER.10.010102
  • Faizah, Miswadi, S. S., & Haryani, S. (2013). Development of problem-based learning devices to improve soft skills and understanding concept. Jurnal Pendidikan IPA Indonesia, 2(2), 120-128. https://doi.org/10.15294/jpii.v2i2.2712
  • Furberg, A. (2016). Teacher support in computer-supported lab work: Bridging the gap between lab experiments and students’ conceptual understanding. International Journal of Computer-Supported Collaborative Learning, 2(1), 1-25. http://dx.doi.org/10.1007/s11412-016-9229-3
  • Geary, D. C., vanMarle, K., Chu, F. W., Rouder, J., Hoard, M. K., & Nugent, L. (2017). Early conceptual understanding of cardinality predicts superior school-entry number-system knowledge. Psychological Science, 1(2), 1-15. http://dx.doi.org/10.1177/0956797617729817
  • Getzels, J. W., & Taylor, I. A. (Eds.). (1975). Perspectives in creativity. AldineTransaction.
  • Grbich, C. (2012). Qualitative data analysis: An introduction. London, England: Sage.
  • Gruenewald, D. A., & Smith, G. A. (2014). Place-based education in the global age: Local diversity. New York: Psychology Press.
  • Hermita, N., Suhandi, A., Syaodih, E., Samsudin, A., Isjoni, Johan, H., Rosa, F., Setyaningsih, R., Sapriadil, & Safitri, D. (2017). Constructing and implementing a four tier test about static electricity to diagnose pre-service elementary school teacher’ misconceptions. Journal of Physics: Conference Series, 895. http://dx.doi.org/10.1088/17426596/895/1/012167
  • Holme, T. A., Luxford, C. J., & Brandriet, A. (2015). Defining conceptual understanding in general chemistry. Journal of Chemical Education, 92(9), 1477-1483. https://doi.org/10.1021/acs.jchemed.5b00218
  • Istiyono, E., Mardapi, D., & Suparno. (2014). Development of high physical thinking skills (PysTHOTS) development students in high school. Jurnal Penelitian dan Evaluasi Pendidikan, 18(1), 1-12. https://doi.org/10.21831/pep.v18i1.2120
  • Karpova, E., Marcketti, S. B., & Barker, J. (2011). The efficacy of teaching creativity: Assessment of student creative thinking before and after exercises. Clothing and Textiles Research Journal, 29(1), 52-66. http://dx.doi.org/10.1177/0887302X11400065
  • Kauchak, D., & Eggen, P. (2012). Learning strategies and models: Teaching content and thinking skills. Jakarta: Indeks.
  • Kiryak, Z., & Çalik, M. (2017). Improving grade 7 students’ conceptual understanding of water pollution via common knowledge construction model. International Journal of Science and Mathematics Education, 1(1), 1-22. http://dx.doi.org/10.1007/s10763-017-9820-8
  • Kurniawati, E., Hartanto, & Zamzaili. (2017). The effect of assurance, relevance, interest, assessment, satisfaction (ARIAS) integrative and early ability model in improving the understanding of mathematical concept and troubleshooting the first middle school students in Kepahiang. Jurnal Pendidikan Matematika Raflesia, 2(2), 174-187. https://doi.org/10.31186/jpmr.v2i2.3970
  • Kusumaningrum, S., & Djukri, D. (2016). Development of project based learning (PjBL) learning tools to improve skills in the process of science and creativity. Jurnal Inovasi Pendidikan IPA, 2(2), 241-251. http://dx.doi.org/10.21831/jipi.v2i2.5557
  • Loewenthal, K., & Lewis, C. A. (2018). An introduction to psychological tests and scales. London: Psychology Press. https://doi.org/10.4324/9781315782980
  • Luangrath, P., Pettersson, S., & Benckert, S. (2011). On the use of two versions of the Force Concept Inventory to test conceptual understanding of mechanics in Lao PDR. Eurasia Journal of Mathematics, Science and Technology Education, 7(2), 103-114. http://dx.doi.org/10.12973/ejmste/7518
  • Mądrala, M., Wąsik, M., & Małoszewski, P. (2017). Interpretation of environmental tracer data for conceptual understanding of groundwater flow: An application for fractured aquifer systems in the Kłodzko Basin, Sudetes, Poland. Isotopes in Environmental and Health Studies, 2(1), 1-19. http://dx.doi.org/10.1080/10256016.2017.1330268
  • Moran, K. R., & Keeley, P. (2015). Teaching for conceptual understanding in science. Arlington: NSTA Press, National Science Teachers Association. Retrieved from https://www.nsta.org/STORE/download.aspx?l=/nLs2r2AUWvDwD5QHwtUAg==
  • Muskitta, M., & Djukri. (2016). Effect of PBT model on critical thinking ability and creative thinking ability of high school students. Jurnal Inovasi Pendidikan IPA, 2(1), 58-65. http://dx.doi.org/10.21831/jipi.v2i1.8809
  • Neuman, W. L. (2011). Social research methods: Qualitative and quantitative approaches. Boston: Allyn & Bacon.
  • Newcombe, N. S., & Shipley, T. F. (2014). Studying visual and spatial reasoning for design creativity: Thinking about spatial thinking. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9297-4_10
  • Noviani, Y., Hartono, & Rusilowati, A. (2017). Analysis of students' mindset in solving science questions in terms of critical and creative thinking ability and science literacy. Journal of Innovative Science Education, 6(2), 147-154. https://doi.org/10.15294/jise.v6i2.14127
  • Nugroho, R. A., & Suryadarma, I. G. P. (2018). The influence of servant leadership learning with a concept mapping of students' understanding of concepts and critical thinking. Jurnal Inovasi Pendidikan IPA, 4(1), 114-127. http://dx.doi.org/10.21831/jipi.v4i1.9823
  • Nuswowati, M., Susilaningsih, E., Ramlawati, & Kadarwati, S. (2017). Implementation of problem-based learning with green chemistry vision to improve creative thinking skill and students’ creative actions. Jurnal Pendidikan IPA Indonesia, 6(2), 221-228. http://dx.doi.org/10.15294/jpii.v6i2.9467
  • Perry, A., & Karpova, E. (2017). Efficacy of teaching creative thinking skills: A comparison of multiple creativity assessments. Thinking Skills and Creativity, 1(2), 1-25. http://dx.doi.org/10.1016/j.tsc.2015.169
  • Pes¸Man, H., & Eryilmaz, A. (2010). Development of a three tier test to assess misconceptions about simple electric circuits. The Journal of Educational Research, 103, 208–222. http://dx.doi.org/10.1080/00220670903383002
  • Piaw, C. Y. (2010). Building a test to assess creative and critical thinking simultaneously. Procedia Social and Behavioral Sciences, 2(2), 551-559. http://dx.doi.org/10.1016/j.sbspro.2010.03.062
  • Porter, M. E., & Kramer, M. R. (2018). Managing sustainable business: Creating shared value. Dordrecht: Springer. https://doi.org/10.1007/978-94-024-1144-7_16
  • Rahmatan, H., Liliasari, & Redjeki, S. (2012). Development of computer-based biochemical learning models to collect creative thinking skills of biological teacher students. Jurnal Pendidikan IPA Indonesia, 1(2), 178-182. https://doi.org/10.15294/jpii.v1i2.2136
  • Sadiqin, I. K., Santoso, U. T., & Sholahuddin, A. (2017). Understanding the natural science concept of middle school students through learning problem solving on topics of changing objects around us. Jurnal Inovasi Pendidikan IPA, 3(1), 52-62. http://dx.doi.org/10.21831/jipi.v3i1.12554
  • Santofani, A., & Rosana, D. (2016). Development of creativity tests on physics learning with inquiry approaches to the kinetic theory of gas material. Jurnal Inovasi Pendidikan IPA, 2(2), 134-144. http://dx.doi.org/10.21831/jipi.v2i2.6373
  • Sriyansyah, S. P., & Suhandi, A. (2016). Development of a representational conceptual evaluation in the first law of thermodynamics. Journal of Physics: Conference Series 739, 012125. http://dx.doi.org/10.1088/1742/739/1/012125
  • Sudjana, N. (1990). Assessment of teaching and learning outcomes. Bandung: PT Remaja Rosdakarya.
  • TIMSS & PIRLS International Study Center. (2012). TIMSS 2011 international results in science. Boston: The TIMSS & PIRLS International Study Center, Boston College. Retrieved from http://timss.bc.edu/timss2011/release.html
  • Van den Berg, G. (2008). The use of assess-ment in the development of higher-order thinking skills. Africa Education Review, 1(2), 279-294. http://dx.doi.org/10.1080/18146620408566285
  • Wibowo, F. C., & Suhandi, A. (2013). Application of project-based science creative learning (SCL) model for improving cognitive learning outcomes and creative thinking skills. Jurnal Pendidikan IPA Indonesia, 2(1), 67-75. https://doi.org/10.15294/jpii.v2i1.2512
  • Wilcox, B. R., Baily, M. C., Chasteen, S. V., Ryan, Q. X., & Pollock, S. J. (2015). Development and uses of upper-division conceptual assessments. Physical Review Physics Education Research, 11(2), 020115. http://dx.doi.org/10.1103/PhysRevSTPER.11.020115
  • Winarti, Cari, Suparmi, Sunarno, W., & Istiyono, E. (2017). Development of two tier test to assess conceptual understanding in heat and temperature. Journal of Physics: Conference Series, 795. http://dx.doi.org/10.1088/17426596/795/1/012052
  • Yusrizal & Halim, A. (2017). the effect of the one-tier, two-tier, and three-tier diagnostic test toward the students' confidence and understanding toward the concepts of atomic nuclear. Unnes Science Education Journal, 6(2), 1-10. http://dx.doi.org/15856/3133136111020170731

Development of Physics-Tier Tests (PysTT) to Measure Students' Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis

Year 2019, Volume: 7 Issue: 3, 747 - 775, 15.09.2019
https://doi.org/10.17478/jegys.587203

Abstract

This paper is based on the background of the
problem of the low high order thinking skills in students, especially in the skills
to think creatively and conceptual understanding. Conceptual understanding that
students have in relation to physics learning material has an important role in
developing students' high order thinking skills in solving problems of daily
life creatively. The method used in this research is descriptive qualitative
research method with literature studies. The results of this study were
obtained a synthesis of physics-tier tests (PysTT) to measure conceptual
understanding and students' creative thinking skills, which are the basis for
the development of physics-tier tests (PysTT) based on real-life problems experienced
by students realistically. In addition, the physics-tier (PysTT) tests is also
one of the assessment instruments whose development is based on aspects of
students' conceptual understanding of physics matter in everyday problems by
prioritizing aspects of identifying and formulating problems, identifying
scientific evidence and phenomena, drawing conclusions, and communicating
conclusions creative. These aspects must be actualized by students in their
lives in the present and in the future that are useful for mutual benefit
.

References

  • Aizikovitsh-Udi, E., & Cheng, D. (2015). Developing critical thinking skills from dispositions to abilities: Mathematics education from early childhood to high school. Creative Education, 6(1), 455-462. http://dx.doi.org/10.4236/ce.2015.64045
  • Almeida, L. S., Prietob, L. P., Ferrando, M., Oliveira, E., & Ferrandiz, C. (2017). Torrance Test of Creative Thinking: The question of its construct validity. Journal of Innovative Science Education, 3(1), 53-58. http://dx.doi.org/10.1016/j.tsc.2008.03.003
  • Apino, E., & Retnawati, H. (2017). Developing instructional design to improve mathematical higher order thinking skills of students. Journal of Physics: Conference Series, 812, 1-8. http://dx.doi.org/10.1088/1742-6596/812/1/012100
  • Baily, C., Ryan, Q. X., Astolfi, C., & Pollock, S. J. (2017). Conceptual assessment tool for advanced undergraduate electrodynamics. Physical Review Physics Education Research, 13(2), 020113. http://dx.doi.org/10.1103/PhysRevPhysEducRes.13.020113
  • Barniol, P., & Zavala, G. (2016). Mechanical waves conceptual survey: Its modification and conversion to a standard multiple-choice test. Physical Review Physics Education Research, 12(1), 010107. http://dx.doi.org/10.1103/PhysRevPhysEducRes.12.010107
  • Barrow, R. (2015). Understanding skills: Thinking, feeling, and caring 1st edition. London: Routledge. https://doi.org/10.4324/9781315678276
  • Bates, S. P., & Galloway, R. K., Riise, J., & Homer, D. (2014). Assessing the quality of a student-generated question repository. Physical Review Physics Education Research, 10(2), 020105. http://dx.doi.org/10.1103/PhysRevSTPER.10.020105
  • Birgili, B. (2015). Creative and critical thinking skills in problem-based learning environments. Journal of Gifted Education and Creativity, 2(2), 71-80. http://dx.doi.org/10.18200/JGEDC.2015214253
  • Caballero, M. D., Doughty, L., Turnbull, A. M., Pepper, R. E., & Pollock, S. J. (2017). Assessing learning outcomes in middle-division classical mechanics: The Colorado classical mechanics and math methods instrument. Physical Review Physics Education Research, 13(1), 010118, http://dx.doi.org/10.1103/PhysRevPhysEducRes.13.010118
  • Chasteen, S. V., Pepper, R. E., Caballero, M. D., Pollock, S. J., & Perkins, K. K. (2012). Colorado Upper-Division Electrostatics diagnostic: A conceptual assessment for the junior level. Physical Review Physics Education Research. 8(2), 020108. http://dx.doi.org/10.1103/PhysRevSTPER.8.020108
  • Collins, R. (2014). Skills for the 21st Century: Teaching higher-order thinking. Curriculum & Leadership Journal, 12(14), 1-7. Retrieved from http://www.curriculum.edu.au/leader/teaching_higher_order_thinking,37431.html?issueI
  • Ding, L. (2014). Seeking missing pieces in science concept assessments: Reevaluating the brief electricity and magnetism assessment through rasch analysis. Physical Review Physics Education Research, 10(1), 010105. http://dx.doi.org/10.1103/PhysRevSTPER.10.010105
  • Docktor, J. L., Dornfeld, J., Frodermann, E., Heller, K., & Hsu, L. (2016). Assessing student written problem solutions: A problem-solving rubric with application to introductory physics. Physical Review Physics Education Research, 12(1), 010130. http://dx.doi.org/10.1103/PhysRevPhysEducRes.12.01013
  • Efendi, R. (2010). Kemampuan fisika siswa indonesia dalam TIMSS. Prosiding Seminar Nasional Fisika 2010, ISBN: 978-979-98010-6-7.
  • Eshach, H. (2014). Development of a student centered instrument to assess middle school students’ conceptual understanding of sound. Physical Review Physics Education Research, 10(1), 010102. http://dx.doi.org/10.1103/PhysRevSTPER.10.010102
  • Faizah, Miswadi, S. S., & Haryani, S. (2013). Development of problem-based learning devices to improve soft skills and understanding concept. Jurnal Pendidikan IPA Indonesia, 2(2), 120-128. https://doi.org/10.15294/jpii.v2i2.2712
  • Furberg, A. (2016). Teacher support in computer-supported lab work: Bridging the gap between lab experiments and students’ conceptual understanding. International Journal of Computer-Supported Collaborative Learning, 2(1), 1-25. http://dx.doi.org/10.1007/s11412-016-9229-3
  • Geary, D. C., vanMarle, K., Chu, F. W., Rouder, J., Hoard, M. K., & Nugent, L. (2017). Early conceptual understanding of cardinality predicts superior school-entry number-system knowledge. Psychological Science, 1(2), 1-15. http://dx.doi.org/10.1177/0956797617729817
  • Getzels, J. W., & Taylor, I. A. (Eds.). (1975). Perspectives in creativity. AldineTransaction.
  • Grbich, C. (2012). Qualitative data analysis: An introduction. London, England: Sage.
  • Gruenewald, D. A., & Smith, G. A. (2014). Place-based education in the global age: Local diversity. New York: Psychology Press.
  • Hermita, N., Suhandi, A., Syaodih, E., Samsudin, A., Isjoni, Johan, H., Rosa, F., Setyaningsih, R., Sapriadil, & Safitri, D. (2017). Constructing and implementing a four tier test about static electricity to diagnose pre-service elementary school teacher’ misconceptions. Journal of Physics: Conference Series, 895. http://dx.doi.org/10.1088/17426596/895/1/012167
  • Holme, T. A., Luxford, C. J., & Brandriet, A. (2015). Defining conceptual understanding in general chemistry. Journal of Chemical Education, 92(9), 1477-1483. https://doi.org/10.1021/acs.jchemed.5b00218
  • Istiyono, E., Mardapi, D., & Suparno. (2014). Development of high physical thinking skills (PysTHOTS) development students in high school. Jurnal Penelitian dan Evaluasi Pendidikan, 18(1), 1-12. https://doi.org/10.21831/pep.v18i1.2120
  • Karpova, E., Marcketti, S. B., & Barker, J. (2011). The efficacy of teaching creativity: Assessment of student creative thinking before and after exercises. Clothing and Textiles Research Journal, 29(1), 52-66. http://dx.doi.org/10.1177/0887302X11400065
  • Kauchak, D., & Eggen, P. (2012). Learning strategies and models: Teaching content and thinking skills. Jakarta: Indeks.
  • Kiryak, Z., & Çalik, M. (2017). Improving grade 7 students’ conceptual understanding of water pollution via common knowledge construction model. International Journal of Science and Mathematics Education, 1(1), 1-22. http://dx.doi.org/10.1007/s10763-017-9820-8
  • Kurniawati, E., Hartanto, & Zamzaili. (2017). The effect of assurance, relevance, interest, assessment, satisfaction (ARIAS) integrative and early ability model in improving the understanding of mathematical concept and troubleshooting the first middle school students in Kepahiang. Jurnal Pendidikan Matematika Raflesia, 2(2), 174-187. https://doi.org/10.31186/jpmr.v2i2.3970
  • Kusumaningrum, S., & Djukri, D. (2016). Development of project based learning (PjBL) learning tools to improve skills in the process of science and creativity. Jurnal Inovasi Pendidikan IPA, 2(2), 241-251. http://dx.doi.org/10.21831/jipi.v2i2.5557
  • Loewenthal, K., & Lewis, C. A. (2018). An introduction to psychological tests and scales. London: Psychology Press. https://doi.org/10.4324/9781315782980
  • Luangrath, P., Pettersson, S., & Benckert, S. (2011). On the use of two versions of the Force Concept Inventory to test conceptual understanding of mechanics in Lao PDR. Eurasia Journal of Mathematics, Science and Technology Education, 7(2), 103-114. http://dx.doi.org/10.12973/ejmste/7518
  • Mądrala, M., Wąsik, M., & Małoszewski, P. (2017). Interpretation of environmental tracer data for conceptual understanding of groundwater flow: An application for fractured aquifer systems in the Kłodzko Basin, Sudetes, Poland. Isotopes in Environmental and Health Studies, 2(1), 1-19. http://dx.doi.org/10.1080/10256016.2017.1330268
  • Moran, K. R., & Keeley, P. (2015). Teaching for conceptual understanding in science. Arlington: NSTA Press, National Science Teachers Association. Retrieved from https://www.nsta.org/STORE/download.aspx?l=/nLs2r2AUWvDwD5QHwtUAg==
  • Muskitta, M., & Djukri. (2016). Effect of PBT model on critical thinking ability and creative thinking ability of high school students. Jurnal Inovasi Pendidikan IPA, 2(1), 58-65. http://dx.doi.org/10.21831/jipi.v2i1.8809
  • Neuman, W. L. (2011). Social research methods: Qualitative and quantitative approaches. Boston: Allyn & Bacon.
  • Newcombe, N. S., & Shipley, T. F. (2014). Studying visual and spatial reasoning for design creativity: Thinking about spatial thinking. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9297-4_10
  • Noviani, Y., Hartono, & Rusilowati, A. (2017). Analysis of students' mindset in solving science questions in terms of critical and creative thinking ability and science literacy. Journal of Innovative Science Education, 6(2), 147-154. https://doi.org/10.15294/jise.v6i2.14127
  • Nugroho, R. A., & Suryadarma, I. G. P. (2018). The influence of servant leadership learning with a concept mapping of students' understanding of concepts and critical thinking. Jurnal Inovasi Pendidikan IPA, 4(1), 114-127. http://dx.doi.org/10.21831/jipi.v4i1.9823
  • Nuswowati, M., Susilaningsih, E., Ramlawati, & Kadarwati, S. (2017). Implementation of problem-based learning with green chemistry vision to improve creative thinking skill and students’ creative actions. Jurnal Pendidikan IPA Indonesia, 6(2), 221-228. http://dx.doi.org/10.15294/jpii.v6i2.9467
  • Perry, A., & Karpova, E. (2017). Efficacy of teaching creative thinking skills: A comparison of multiple creativity assessments. Thinking Skills and Creativity, 1(2), 1-25. http://dx.doi.org/10.1016/j.tsc.2015.169
  • Pes¸Man, H., & Eryilmaz, A. (2010). Development of a three tier test to assess misconceptions about simple electric circuits. The Journal of Educational Research, 103, 208–222. http://dx.doi.org/10.1080/00220670903383002
  • Piaw, C. Y. (2010). Building a test to assess creative and critical thinking simultaneously. Procedia Social and Behavioral Sciences, 2(2), 551-559. http://dx.doi.org/10.1016/j.sbspro.2010.03.062
  • Porter, M. E., & Kramer, M. R. (2018). Managing sustainable business: Creating shared value. Dordrecht: Springer. https://doi.org/10.1007/978-94-024-1144-7_16
  • Rahmatan, H., Liliasari, & Redjeki, S. (2012). Development of computer-based biochemical learning models to collect creative thinking skills of biological teacher students. Jurnal Pendidikan IPA Indonesia, 1(2), 178-182. https://doi.org/10.15294/jpii.v1i2.2136
  • Sadiqin, I. K., Santoso, U. T., & Sholahuddin, A. (2017). Understanding the natural science concept of middle school students through learning problem solving on topics of changing objects around us. Jurnal Inovasi Pendidikan IPA, 3(1), 52-62. http://dx.doi.org/10.21831/jipi.v3i1.12554
  • Santofani, A., & Rosana, D. (2016). Development of creativity tests on physics learning with inquiry approaches to the kinetic theory of gas material. Jurnal Inovasi Pendidikan IPA, 2(2), 134-144. http://dx.doi.org/10.21831/jipi.v2i2.6373
  • Sriyansyah, S. P., & Suhandi, A. (2016). Development of a representational conceptual evaluation in the first law of thermodynamics. Journal of Physics: Conference Series 739, 012125. http://dx.doi.org/10.1088/1742/739/1/012125
  • Sudjana, N. (1990). Assessment of teaching and learning outcomes. Bandung: PT Remaja Rosdakarya.
  • TIMSS & PIRLS International Study Center. (2012). TIMSS 2011 international results in science. Boston: The TIMSS & PIRLS International Study Center, Boston College. Retrieved from http://timss.bc.edu/timss2011/release.html
  • Van den Berg, G. (2008). The use of assess-ment in the development of higher-order thinking skills. Africa Education Review, 1(2), 279-294. http://dx.doi.org/10.1080/18146620408566285
  • Wibowo, F. C., & Suhandi, A. (2013). Application of project-based science creative learning (SCL) model for improving cognitive learning outcomes and creative thinking skills. Jurnal Pendidikan IPA Indonesia, 2(1), 67-75. https://doi.org/10.15294/jpii.v2i1.2512
  • Wilcox, B. R., Baily, M. C., Chasteen, S. V., Ryan, Q. X., & Pollock, S. J. (2015). Development and uses of upper-division conceptual assessments. Physical Review Physics Education Research, 11(2), 020115. http://dx.doi.org/10.1103/PhysRevSTPER.11.020115
  • Winarti, Cari, Suparmi, Sunarno, W., & Istiyono, E. (2017). Development of two tier test to assess conceptual understanding in heat and temperature. Journal of Physics: Conference Series, 795. http://dx.doi.org/10.1088/17426596/795/1/012052
  • Yusrizal & Halim, A. (2017). the effect of the one-tier, two-tier, and three-tier diagnostic test toward the students' confidence and understanding toward the concepts of atomic nuclear. Unnes Science Education Journal, 6(2), 1-10. http://dx.doi.org/15856/3133136111020170731
There are 54 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section Thinking Skills
Authors

Himawan Putranta 0000-0003-2646-8237

Supahar Supahar This is me 0000-0002-2486-5549

Publication Date September 15, 2019
Published in Issue Year 2019 Volume: 7 Issue: 3

Cite

APA Putranta, H., & Supahar, S. (2019). Development of Physics-Tier Tests (PysTT) to Measure Students’ Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis. Journal for the Education of Gifted Young Scientists, 7(3), 747-775. https://doi.org/10.17478/jegys.587203
AMA Putranta H, Supahar S. Development of Physics-Tier Tests (PysTT) to Measure Students’ Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis. JEGYS. September 2019;7(3):747-775. doi:10.17478/jegys.587203
Chicago Putranta, Himawan, and Supahar Supahar. “Development of Physics-Tier Tests (PysTT) to Measure Students’ Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis”. Journal for the Education of Gifted Young Scientists 7, no. 3 (September 2019): 747-75. https://doi.org/10.17478/jegys.587203.
EndNote Putranta H, Supahar S (September 1, 2019) Development of Physics-Tier Tests (PysTT) to Measure Students’ Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis. Journal for the Education of Gifted Young Scientists 7 3 747–775.
IEEE H. Putranta and S. Supahar, “Development of Physics-Tier Tests (PysTT) to Measure Students’ Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis”, JEGYS, vol. 7, no. 3, pp. 747–775, 2019, doi: 10.17478/jegys.587203.
ISNAD Putranta, Himawan - Supahar, Supahar. “Development of Physics-Tier Tests (PysTT) to Measure Students’ Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis”. Journal for the Education of Gifted Young Scientists 7/3 (September 2019), 747-775. https://doi.org/10.17478/jegys.587203.
JAMA Putranta H, Supahar S. Development of Physics-Tier Tests (PysTT) to Measure Students’ Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis. JEGYS. 2019;7:747–775.
MLA Putranta, Himawan and Supahar Supahar. “Development of Physics-Tier Tests (PysTT) to Measure Students’ Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis”. Journal for the Education of Gifted Young Scientists, vol. 7, no. 3, 2019, pp. 747-75, doi:10.17478/jegys.587203.
Vancouver Putranta H, Supahar S. Development of Physics-Tier Tests (PysTT) to Measure Students’ Conceptual Understanding and Creative Thinking Skills: A Qualitative Synthesis. JEGYS. 2019;7(3):747-75.

Cited By











By introducing the concept of the "Gifted Young Scientist," JEGYS has initiated a new research trend at the intersection of science-field education and gifted education.