Review
BibTex RIS Cite

Orman Yan Ürünlerinden Yararlanarak Doğal Rosin Kaplama ile Narenciye Meyvelerinin Raf Ömrünü Uzatma Olanakları İncelemesi

Year 2024, , 169 - 175, 24.08.2024
https://doi.org/10.53472/jenas.1517276

Abstract

Mevcut çalışma, limon meyvelerinin raf ömrünü uzatmak amacıyla orman ürünlerinden elde edilen biyolojik olarak parçalanabilen bir reçine kaplamanın kullanımını incelemektedir. Son araştırmaların sonuçları incelendiğinde; reçine kaplı limonların, kaplanmamış kontrol numunelerine göre önemli ölçüde daha düşük nem kaybı sergilediği ve daha yüksek su aktivitesi seviyelerini koruduğu gösterilmektedir. Bu durum, reçine kaplamanın etkili bir şekilde nem bariyeri görevi görerek dehidrasyonu azalttığını öne sürmektedir. Ayrıca kaplamalı limonlardaki brix seviyelerinin depolama süresi boyunca sabit kaldığı, kontrol grubunda ise kayda değer bir düşüş yaşandığı belirtilmektedir. Ph seviyeleri de reçine kaplamanın limonların asitliğini korumaya yardımcı olduğunu ve bunun da limonların korunması için çok önemli olduğunu göstermektedir. Kaplanmış numunelerde limonların sertliğinin daha iyi korunduğu ve kontrol grubuna göre önemli ölçüde daha düşük ağırlık kaybı sergilediği vurgulanmaktadır. Reçine kaplamanın fizyolojik ve biyokimyasal bozulmayı azaltmadaki etkinliği belirtilmektedir. Duyusal değerlendirmeler; reçine kaplı limonların, kaplanmamış kontrol numunelerine kıyasla üstün görsel çekiciliğe, dokuya ve genel kabul edilebilirliğe sahip olduğunu ortaya koymaktadır. Artırılmış raf ömrü ve kalitesi nedeniyle reçine kaplı limonlara yönelik potansiyel tüketici tercihleri öne çıkmaktadır. Genel olarak reçine kaplamanın uygulanmasının, farklı depolama koşullarında kalite özelliklerini koruyarak limonların raf ömrünü önemli ölçüde uzattığı gösterilmektedir. Bu çalışma; narenciye meyvelerinin korunması, hasat sonrası kayıpların azaltılması ve pazarlanabilirliğin artırılması için biyolojik olarak parçalanabilen reçine kaplamaların etkili bir yöntem olarak kullanılma potansiyelini göstermektedir.

References

  • Aayush, K., McClements, D. J., Sharma, S., Sharma, R., Singh, G. P., Sharma, K., & Oberoi, K. (2022). Innovations in the development and application of edible coatings for fresh and minimally processed Apple. Food Control, 141, 109188.
  • Abd-Allah, M. A., Khallaf, M. F., Mahmoud, A. A., & Salem, M. H. (1996). Extending the shelf-life of citrus fruits using irradiation and/or other treatments I.Baladyoranges. Acta Alimentaria, 25.
  • AgriEngineering. (2023). Application of Edible Coating in Extension of Fruit Shelf Life: Review. MDPI, 5(1), 520-536.
  • antimicrobial films based on chitosan matrix. J Food Sci. 67: 1162-1169.
  • Ayana, B., Turhan, K. N., 2010. Gıda Ambalajlamasında antimikrobiyal madde içeren yenilebilir filmler/kaplamalar ve uygulamaları. Gıda 35(2): 151-158.
  • Baldwin, E.A., Nisperos-Carriedo, M.O., & Baker, R.A. (1995). Use of Edible Coatings to Preserve Quality of Lightly (and Minimally) Processed Products. Critical Reviews in Food Science and Nutrition, 35(6), 509-524.
  • Bhaskar, R., Zo, S. M., Narayanan, K. B., Purohit, S. D., Gupta, M. K., & Han, S. S. (2023). Recent development of protein-based biopolymers in food packaging applications: A review. Polymer Testing, 124, 108097.
  • Caner, C., & Küçük, E. (2004). Edible films and coatings. In: Novel Food Packaging Techniques, 339-362.
  • Carvalho, D. U. D., Neves, C. S. V. J., Cruz, M. A. D., Colombo, R. C., Alferez, F., & Leite Junior, R. P. (2023). Effectiveness of natural-based coatings on sweet oranges post-harvest life and antioxidant capacity of obtained by-products. Horticulturae, 9(6), 635.
  • Coatings. (2015). Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. MDPI.
  • Coma, V., Martial-Gros, A., Garreau,, S., Copinet, A., Salin, F., Deschamps, A. 2002. Edible
  • Demircan, B., & Ocak, Ö. Ö. (2019). Gıda katkı maddelerinin yenilebilir film ve kaplamalar kullanılarak taşınmasının günümüzde ve gelecekteki uygulama potansiyeli. Sinop Üniversitesi Fen Bilimleri Dergisi, 4(2), 130-150.
  • Demirci, E. (2011). FUNGİSİTLERE KARŞI DAYANIKLILIĞIN GELİŞİMİ VE YÖNETİMİ. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 27(4).
  • Discover Food. (2023). Application and evaluation of plant-based edible active coatings to enhance the shelf-life and quality attributes of Jara lebu (Citrus medica). Springer.
  • Edible coating solution increases shelf-life of fruits and vegetables. (2022). Nature.
  • El-Ghazawy, R. A., El-Saeed, A. M., Al-Shafey, H. I., Abdul-Raheim, A. R. M., & El-Sockary, M. A. (2015). Rosin based epoxy coating: Synthesis, identification and characterization. European Polymer Journal, 69, 403-415.
  • Foods. (2021). Plant-Based Nano-Emulsions as Edible Coatings in the Extension of Fruits and Vegetables Shelf Life: A Patent Review. MDPI.
  • Gemici, T. (2024). Orman Ürünlerinde Elde Edilen Reçinenin Yediveren Limon Meyvesi Üzerindeki Raf Ömrü Denemeleri. Karamanoğlu Mehmetbey University, Institute of Science, Department of Food Engineering.
  • Hazarika, T.K., Lalhriatpuia, C., Ngurthankhumi, R., Lalruatsangi, E. and Lalhmachhuani, H. (2023). Edible coatings in extending the shelf life of fruits: a review. Indian Journal of Agricultural Research, 57 (5), 555-558.
  • Horticulturae. (2023). Effectiveness of Natural-Based Coatings on Sweet Oranges Postharvest Life and Antioxidant Capacity of Obtained By-Products. MDPI.
  • Khezerlou, A., Tavassoli, M., Alizadeh Sani, M., Mohammadi, K., Ehsani, A., & McClements, D. J. (2021). Application of nanotechnology to improve the performance of biodegradable biopolymer-based packaging materials. Polymers, 13(24), 4399.
  • Kocira A, Kozłowicz K, Panasiewicz K, Staniak M, Szpunar-Krok E, Hortyńska P. Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality—A Review. Agronomy. 2021; 11(5):813. https://doi.org/10.3390/agronomy11050813
  • Marmur T, Elkind Y, Nussinovitch A, 2013. Increase in gloss of coated red peppers by different brushing procedures. LWT- Food Science and Technology, 51 (2): 531–536.
  • Ncama, K., Magwaza, L. S., Mditshwa, A., & Tesfay, S. Z. (2018). Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food packaging and shelf life, 16, 157-167.
  • Odetayo, T., Tesfay, S., & Ngobese, N. Z. (2022). Nanotechnology‐enhanced edible coating application on climacteric fruits. Food Science & Nutrition, 10(7), 2149-2167.
  • Palou L, Valencia-Chamorro SA, Pérez-Gago MB. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings. 2015; 5(4):962-986. https://doi.org/10.3390/coatings5040962
  • Patil, V., Shams, R., & Dash, K. K. (2023). Techno-functional characteristics, and potential applications of edible coatings: A comprehensive review. Journal of Agriculture and Food Research, 100886.
  • Peres, RS, Armelin, E., Moreno-Martinez, JA, Aleman, C. and Ferreira, CA (2015). Handling and antifouling properties of papain-based antifouling coatings. Applied Surface Science, 341, 75-85.
  • Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage. (2022). Horticulturae, MDPI.
  • Prasad, K., Siddiqui, M. W., Sharma, R. R., Gaurav, A. K., Neha, P., & Kumar, N. (2018). Edible coatings and their effect on postharvest fruit quality. Innovative packaging of fruits and vegetables: strategies for safety and quality maintenance. Apple Academic Press, Palm Bay, FL, 161-197.
  • Sustainable Food Technol. (2023). Carnauba wax-based sustainable coatings for prolonging postharvest shelf-life of citrus fruits. Royal Society of Chemistry.
  • Şen Arslan, Hülya. (2023). Bone extract flavored with essential oils: The effect on physical and sensory properties, and the antioxidant and antimicrobial activity. Fleischwirtschaft -Frankfurt-. 2023. 79-83.
  • Şen Arslan, Hülya & Yerlikaya, Sabire. (2023). Chemical and antioxidant effects of Achillea millefolium L. and Hypericum perforatum L. extracts on sausages. Fleischwirtschaft -Frankfurt-.
  • Talon, M., & Gmitter, F.G. (2008). Citrus genomics. International Journal of Plant Genomics, 2008, 528361.
  • Tomás‐Barberán, F. A., & Espín, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853-876.
  • Tyagi, P., Salem, K. S., Hubbe, M. A., & Pal, L. (2021). Advances in barrier coatings and film technologies for achieving sustainable packaging of food products–a review. Trends in Food Science & Technology, 115, 461-485.
  • Tzia, C., Tasios, L., Spiliotaki, T., Chranioti, C., & Giannou, V. (2016). 16 Edible Coatings and Films to Preserve Quality of Fresh Fruits and Vegetables. Food Preservation, 531.
  • Using Nanotechnology for Enhancing the Shelf Life of Fruits. (2021). IntechOpen.
  • Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. (2008). Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food control, 19(12), 1130-1138.
  • Yerlikaya, Sabire & Şen Arslan, Hülya. (2021). Antioxidant and Chemical Effect of Propolis, Sage (Salvia officinalis L.) and Lavender (Lavandula angustifolia Mill) Ethanolic Extracts On Chicken Sausages. Journal of Food Processing and Preservation. 45. 10.1111/jfpp.15551.
  • Yüksel, Ç., Atalay, D., & Erge, H. S. (2020). Yenilebilir kaplamaların taze kesilmiş meyve ve sebzelerde kullanımı. Gıda, 45(2), 340-355.

Possibilities to Extend the Shelf Life of Citrus Fruits with Natural Rosin Coating, Benefiting from Forest By-Products Review

Year 2024, , 169 - 175, 24.08.2024
https://doi.org/10.53472/jenas.1517276

Abstract

The current study examines using a biodegradable rosin coating derived from forest products to extend the shelf life of lemon fruits. Recent research findings show that rosin-coated lemons exhibit significantly lower moisture loss and maintain higher water activity levels compared to uncoated control samples. This suggests that the rosin coating effectively acts as a moisture barrier, reducing dehydration. Additionally, the Brix levels in coated lemons remain stable throughout the storage period, while the control group experiences a notable decline. The pH levels also indicate that the rosin coating helps preserve the acidity of lemons, which is crucial for their preservation. The coated samples retain firmness better and exhibit significantly lower weight loss compared to the control group. The effectiveness of the rosin coating in reducing physiological and biochemical degradation is highlighted. Sensory evaluations reveal that rosin-coated lemons possess superior visual appeal, texture, and overall acceptability compared to uncoated control samples. Due to the extended shelf life and improved quality, potential consumer preferences for rosin-coated lemons are indicated. Overall, the application of rosin coatings significantly extends the shelf life of lemons by preserving quality attributes under various storage conditions. This study demonstrates the potential of biodegradable rosin coatings as an effective method for preserving citrus fruits, reducing postharvest losses, and enhancing marketability.

References

  • Aayush, K., McClements, D. J., Sharma, S., Sharma, R., Singh, G. P., Sharma, K., & Oberoi, K. (2022). Innovations in the development and application of edible coatings for fresh and minimally processed Apple. Food Control, 141, 109188.
  • Abd-Allah, M. A., Khallaf, M. F., Mahmoud, A. A., & Salem, M. H. (1996). Extending the shelf-life of citrus fruits using irradiation and/or other treatments I.Baladyoranges. Acta Alimentaria, 25.
  • AgriEngineering. (2023). Application of Edible Coating in Extension of Fruit Shelf Life: Review. MDPI, 5(1), 520-536.
  • antimicrobial films based on chitosan matrix. J Food Sci. 67: 1162-1169.
  • Ayana, B., Turhan, K. N., 2010. Gıda Ambalajlamasında antimikrobiyal madde içeren yenilebilir filmler/kaplamalar ve uygulamaları. Gıda 35(2): 151-158.
  • Baldwin, E.A., Nisperos-Carriedo, M.O., & Baker, R.A. (1995). Use of Edible Coatings to Preserve Quality of Lightly (and Minimally) Processed Products. Critical Reviews in Food Science and Nutrition, 35(6), 509-524.
  • Bhaskar, R., Zo, S. M., Narayanan, K. B., Purohit, S. D., Gupta, M. K., & Han, S. S. (2023). Recent development of protein-based biopolymers in food packaging applications: A review. Polymer Testing, 124, 108097.
  • Caner, C., & Küçük, E. (2004). Edible films and coatings. In: Novel Food Packaging Techniques, 339-362.
  • Carvalho, D. U. D., Neves, C. S. V. J., Cruz, M. A. D., Colombo, R. C., Alferez, F., & Leite Junior, R. P. (2023). Effectiveness of natural-based coatings on sweet oranges post-harvest life and antioxidant capacity of obtained by-products. Horticulturae, 9(6), 635.
  • Coatings. (2015). Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. MDPI.
  • Coma, V., Martial-Gros, A., Garreau,, S., Copinet, A., Salin, F., Deschamps, A. 2002. Edible
  • Demircan, B., & Ocak, Ö. Ö. (2019). Gıda katkı maddelerinin yenilebilir film ve kaplamalar kullanılarak taşınmasının günümüzde ve gelecekteki uygulama potansiyeli. Sinop Üniversitesi Fen Bilimleri Dergisi, 4(2), 130-150.
  • Demirci, E. (2011). FUNGİSİTLERE KARŞI DAYANIKLILIĞIN GELİŞİMİ VE YÖNETİMİ. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 27(4).
  • Discover Food. (2023). Application and evaluation of plant-based edible active coatings to enhance the shelf-life and quality attributes of Jara lebu (Citrus medica). Springer.
  • Edible coating solution increases shelf-life of fruits and vegetables. (2022). Nature.
  • El-Ghazawy, R. A., El-Saeed, A. M., Al-Shafey, H. I., Abdul-Raheim, A. R. M., & El-Sockary, M. A. (2015). Rosin based epoxy coating: Synthesis, identification and characterization. European Polymer Journal, 69, 403-415.
  • Foods. (2021). Plant-Based Nano-Emulsions as Edible Coatings in the Extension of Fruits and Vegetables Shelf Life: A Patent Review. MDPI.
  • Gemici, T. (2024). Orman Ürünlerinde Elde Edilen Reçinenin Yediveren Limon Meyvesi Üzerindeki Raf Ömrü Denemeleri. Karamanoğlu Mehmetbey University, Institute of Science, Department of Food Engineering.
  • Hazarika, T.K., Lalhriatpuia, C., Ngurthankhumi, R., Lalruatsangi, E. and Lalhmachhuani, H. (2023). Edible coatings in extending the shelf life of fruits: a review. Indian Journal of Agricultural Research, 57 (5), 555-558.
  • Horticulturae. (2023). Effectiveness of Natural-Based Coatings on Sweet Oranges Postharvest Life and Antioxidant Capacity of Obtained By-Products. MDPI.
  • Khezerlou, A., Tavassoli, M., Alizadeh Sani, M., Mohammadi, K., Ehsani, A., & McClements, D. J. (2021). Application of nanotechnology to improve the performance of biodegradable biopolymer-based packaging materials. Polymers, 13(24), 4399.
  • Kocira A, Kozłowicz K, Panasiewicz K, Staniak M, Szpunar-Krok E, Hortyńska P. Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality—A Review. Agronomy. 2021; 11(5):813. https://doi.org/10.3390/agronomy11050813
  • Marmur T, Elkind Y, Nussinovitch A, 2013. Increase in gloss of coated red peppers by different brushing procedures. LWT- Food Science and Technology, 51 (2): 531–536.
  • Ncama, K., Magwaza, L. S., Mditshwa, A., & Tesfay, S. Z. (2018). Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food packaging and shelf life, 16, 157-167.
  • Odetayo, T., Tesfay, S., & Ngobese, N. Z. (2022). Nanotechnology‐enhanced edible coating application on climacteric fruits. Food Science & Nutrition, 10(7), 2149-2167.
  • Palou L, Valencia-Chamorro SA, Pérez-Gago MB. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings. 2015; 5(4):962-986. https://doi.org/10.3390/coatings5040962
  • Patil, V., Shams, R., & Dash, K. K. (2023). Techno-functional characteristics, and potential applications of edible coatings: A comprehensive review. Journal of Agriculture and Food Research, 100886.
  • Peres, RS, Armelin, E., Moreno-Martinez, JA, Aleman, C. and Ferreira, CA (2015). Handling and antifouling properties of papain-based antifouling coatings. Applied Surface Science, 341, 75-85.
  • Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage. (2022). Horticulturae, MDPI.
  • Prasad, K., Siddiqui, M. W., Sharma, R. R., Gaurav, A. K., Neha, P., & Kumar, N. (2018). Edible coatings and their effect on postharvest fruit quality. Innovative packaging of fruits and vegetables: strategies for safety and quality maintenance. Apple Academic Press, Palm Bay, FL, 161-197.
  • Sustainable Food Technol. (2023). Carnauba wax-based sustainable coatings for prolonging postharvest shelf-life of citrus fruits. Royal Society of Chemistry.
  • Şen Arslan, Hülya. (2023). Bone extract flavored with essential oils: The effect on physical and sensory properties, and the antioxidant and antimicrobial activity. Fleischwirtschaft -Frankfurt-. 2023. 79-83.
  • Şen Arslan, Hülya & Yerlikaya, Sabire. (2023). Chemical and antioxidant effects of Achillea millefolium L. and Hypericum perforatum L. extracts on sausages. Fleischwirtschaft -Frankfurt-.
  • Talon, M., & Gmitter, F.G. (2008). Citrus genomics. International Journal of Plant Genomics, 2008, 528361.
  • Tomás‐Barberán, F. A., & Espín, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the Science of Food and Agriculture, 81(9), 853-876.
  • Tyagi, P., Salem, K. S., Hubbe, M. A., & Pal, L. (2021). Advances in barrier coatings and film technologies for achieving sustainable packaging of food products–a review. Trends in Food Science & Technology, 115, 461-485.
  • Tzia, C., Tasios, L., Spiliotaki, T., Chranioti, C., & Giannou, V. (2016). 16 Edible Coatings and Films to Preserve Quality of Fresh Fruits and Vegetables. Food Preservation, 531.
  • Using Nanotechnology for Enhancing the Shelf Life of Fruits. (2021). IntechOpen.
  • Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., & Pérez-Álvarez, J. (2008). Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food control, 19(12), 1130-1138.
  • Yerlikaya, Sabire & Şen Arslan, Hülya. (2021). Antioxidant and Chemical Effect of Propolis, Sage (Salvia officinalis L.) and Lavender (Lavandula angustifolia Mill) Ethanolic Extracts On Chicken Sausages. Journal of Food Processing and Preservation. 45. 10.1111/jfpp.15551.
  • Yüksel, Ç., Atalay, D., & Erge, H. S. (2020). Yenilebilir kaplamaların taze kesilmiş meyve ve sebzelerde kullanımı. Gıda, 45(2), 340-355.
There are 41 citations in total.

Details

Primary Language English
Subjects Botany (Other)
Journal Section Articles
Authors

Taha Gemici 0000-0003-1854-5802

Mehmet Onurhan Gücüş 0000-0002-4593-542X

Ahsen Ezel Bildik Dal 0000-0002-9525-2993

Nizam Mustafa Nizamlıoğlu 0000-0003-0067-3419

Publication Date August 24, 2024
Submission Date July 16, 2024
Acceptance Date August 24, 2024
Published in Issue Year 2024

Cite

APA Gemici, T., Gücüş, M. O., Bildik Dal, A. E., Nizamlıoğlu, N. M. (2024). Possibilities to Extend the Shelf Life of Citrus Fruits with Natural Rosin Coating, Benefiting from Forest By-Products Review. JENAS Journal of Environmental and Natural Studies, 6(2), 169-175. https://doi.org/10.53472/jenas.1517276

JENAS | Journal of Environmental and Natural Studies