Research Article
BibTex RIS Cite

Usnea sp.'nin Antibakteriyel Etkisinin Gıda Kaynaklı Patojenlere Karşı Değerlendirilmesi

Year 2022, , 342 - 349, 30.06.2022
https://doi.org/10.7240/jeps.1091148

Abstract

Gıda kaynaklı hastalıkların görülme sıklığındaki artış, epidemiyolojik çalışmalarla ortaya konulmuş ve bu nedenle ülkelerin sosyoekonomik kalkınmalarına olan olumsuz etkisi de sağlık otoriteleri tarafından rapor edilmiştir. Doğal biyokaynakların kullanımı yoluyla gıda kaynaklı patojenlere karşı mücadele, son yıllardaki araştırmaların odak noktası haline gelmiştir. Likenler, çevrelerindeki diğer canlılarla rekabet etmeleri nedeniyle antibakteriyel, antifungal, anti-kanser vb. gibi çeşitli biyolojik aktivitelere sahip birçok ikincil metabolit üretirler. Bu açıdan, bu çalışmada Türkiye, Kastamonu'dan toplanan Usnea sp.'nin beş gıda kaynaklı patojene karşı antibakteriyel özelliklerini araştırmayı amaçladık. Bu bakteriler hem Gram-pozitif hem de Gram-negatif olanları içermiştir. Verilerimiz, Usnea sp'nin aseton özütlerinin özellikle test edilen Gram pozitif bakterilere (C. perfringens, S. aureus ve B. cereus) karşı değişen oranlarda antibakteriyel etkinliğe sahipti olduğunu göstermiştir. Usnea sp.'nin bu potansiyel antibakteriyel aktivitesi, gıda endüstrisinde kullanılabileceğini düşündürmektedir. Daha önce yemeklerde veya ekmek malzemelerinde kullanıldığı bildirildiğinden, gıda katkı maddesi (koruyucu, raf ömrünü uzatan gibi) olarak kullanılabileceği fikrini vermektedir. Ancak toksisitesi veya toksik olmayan dozları için detaylı çalışmalar yapılmalıdır.

References

  • [1] The Centers for Disease Control and Prevention (CDC) (2018). Estimates of foodborne illness in the United States. https://www.cdc.gov/foodborneburden/index.html. (Accessed Nov 5, 2018).
  • [2] İrfan, E. (2016). Yeni ve yeniden önem kazanan gıda kaynaklı bakteriyel zoonozların epidemiyolojisi. Veteriner Hekimler Derneği Dergisi, 87(2), 63-76.
  • [3] Kearney, G.D. (2018). Introduction to Foodborne Illness Outbreak Investigation, Environmental Public Health: The Practitioner’s Guide 2018, American Public Health Association. DOI: 10.2105/9780875532943ch13.
  • [4] World Health Organization. (2008). Foodborne disease outbreaks: guidelines for investigation and control. World Health Organization.
  • [5] Akhtar, S., Sarker, M. R., Hossain, A. (2014). Microbiological food safety: a dilemma of developing societies. Critical Reviews in Microbiology, 40(4), 348-359.
  • [6] Miao, J., Liang, Y., Chen, L., Wang, W., Wang, J., Li, B., ... & Xu, Z. (2017). Formation and development of Staphylococcus biofilm: with focus on food safety. Journal of Food Safety, 37(4), e12358.
  • [7] World Health Organization (WHO) (2020). World Health Organization. Food safety and foodborne illness. In World Health Organization fact sheet. https://www.who.int/news-room/fact-sheets/detail/food-safety. (Accessed March 21, 2022).
  • [8] Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935.
  • [9] Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., Bordes, C. (2019). Antibacterial properties of polyphenols: characterization and QSAR (Quantitative structure–activity relationship) models. Frontiers in Microbiology, 10, 829.
  • [10] Baptista, R. C., Horita, C. N., Sant'Ana, A. S. (2020). Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Research International, 127, 108762.
  • [11] Jafarzadeh, S., Nafchi, A. M., Salehabadi, A., Oladzad-Abbasabadi, N., Jafari, S. M. (2021). Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 291, 102405.
  • [12] Sayyari, Z., Rabani, M., Farahmandfar, R., Esmaeilzadeh Kenari, R., Mousavi Nadoshan, R. (2021). The effect of nanocomposite edible coating enriched with Foeniculum vulgare essential oil on the shelf life of Oncorhynchus mykiss fish fillets during the storage. Journal of Aquatic Food Product Technology, 30(5), 579-595.
  • [13] Kanatt, S. R., Chander, R., Sharma, A. (2010). Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. International Journal of Food Science & Technology, 45(2), 216-222.
  • [14] Márquez-Rodríguez, A. S., Nevárez-Baca, S., Lerma-Hernández, J. C., Hernández-Ochoa, L. R., Nevárez-Moorillon, G. V., Gutiérrez-Méndez, N., Muñoz-Castellanos, L.N., Salas, E. (2020). In vitro antibacterial activity of Hibiscus sabdariffa L. phenolic extract and its in situ application on shelf-life of beef meat. Foods, 9(8), 1080.
  • [15] Raja, A., Gajalakshmi, P., Raja, M., Mahroop, M. (2010). Drugs from the natural bio sources for human disease. International Journal of Pharmacology, 6(4), 360-363.
  • [16] Ivančević, B., Matavuly, M., & Karaman, M. (2012). Fungi (mushrooms and lichens) in Serbian legislation. Biologia Serbica, 34(1-2).
  • [17] Molnár, K., Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforschung C, 65(3-4), 157-173.
  • [18] Zhao, Y., Wang, M., Xu, B. (2021). A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. Journal of Functional Foods, 80, 104283.
  • [19] John V, Turk A. (2017). Turkiye Likenleri Listesi [A checklist of the lichens of Turkey]. Istanbul: Nezahat Gokyigit Botanik Bahcesi Yayını.
  • [20] Gökalsın, B., Berber, D., Özyiğitoğlu, G. Ç., Yeşilada, E., & Sesal, N. C. (2020). Quorum sensing attenuation properties of ethnobotanically valuable lichens against Pseudomonas aeruginosa. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(6), 792-799.
  • [21] Fowler, K. D. (2013). Journey to Enlichenment: Lichens in the Atlantic World Food Chain.
  • [22] Guo, L., Shi, Q., Fang, J. L., Mei, N., Ali, A. A., Lewis, S. M., Leakey, J.E.A., Frankos, V. H. (2008). Review of usnic acid and Usnea barbata toxicity. Journal of Environmental Science and Health, Part C, 26(4), 317-338.
  • [23] Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W., Wolseley, P. A. (2009). The Lichens of Great Britain and Ireland. British Lichen Society, London. 1046 pp.
  • [24] Srivastava, P., Upreti, D. K., Dhole, T. N., Srivastava, A. K., Nayak, M. T. (2013). Antimicrobial property of extracts of Indian lichen against human pathogenic bacteria. Interdisciplinary Perspectives on Infectious Diseases, 2013.
  • [25] Madamombe, I. T., Afolayan, A. J. (2003). Evaluation of antimicrobial activity of extracts from South African Usnea barbata. Pharmaceutical Biology, 41(3), 199-202.
  • [26] Bharti, S., & Nayaka, S. (2022). Evaluation of some traditional therapeutic properties of Usnea longissima (Ascomycota, lichenized fungi): antimicrobial, antiquorum and antioxidant. Journal of Microbiology, Biotechnology and Food Sciences, 11(4), e3163-e3163.
  • [27] Londoñe-Bailon, P., Sánchez-Robinet, C., Alvarez-Guzman, G. (2019). In vitro antibacterial, antioxidant and cytotoxic activity of methanol-acetone extracts from Antarctic lichens (Usnea antarctica and Usnea aurantiaco-atra). Polar Science, 22, 100477.
  • [28] Sepahvand, A., Studzińska-Sroka, E., Ramak, P., Karimian, V. (2021). Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. Journal of Ethnopharmacology, 268, 113656.
  • [29] Prashith Kekuda, T.R., Mesta, A. R., Vinayaka, K. S., Darshini, S. M., & Akarsh, S. (2016). Antimicrobial activity of Usnea ghattensis G. Awasthi and Usnea undulata Stirt. Journal of Chemical and Pharmaceutical Research, 8(12), 83-88.
  • [30] Behera, B. C., Verma, N., Sonone, A., Makhija, U. (2005). Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotechnology Letters, 27(14), 991-995.
  • [31] Shrestha, G. (2015). Exploring the antibacterial, antioxidant, and anticancer properties of lichen metabolites. Brigham Young University.
  • [32] Manoharachary, C., Nagaraju, D. (2016). Antimicrobial and antifungal activity of Leptogium javanicum mont. and Usnea ghattensis awasthi. Int. J. Mod. Chem. Appl. Sci, 3, 444-445.
  • [33] Bate, P. N. N., Orock, A. E., Nyongbela, K. D., Babiaka, S. B., Kukwah, A., Ngemenya, M. N. (2020). In vitro activity against multi-drug resistant bacteria and cytotoxicity of lichens collected from Mount Cameroon. Journal of King Saud University-Science, 32(1), 614-619.
  • [34] Weckesser, S., Engel, K., Simon-Haarhaus, B., Wittmer, A., Pelz, K., & Schempp, C. Á. (2007). Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine, 14(7-8), 508-516.
  • [35] Pandey, A. (2017). Lichens: a resource chest of herbal antimicrobial compounds. Int J Theoretic Appl Sci., 9, 137-146.
  • [36] Žugić, A., Tadić, V., Kundaković, T., & Savić, S. (2018). Chemical composition and biological activities of the extracts and secondary metabolites of lichens belonging to the genus Usnea, Parmeliaceae. Lekovite sirovine, (38), 68-80.
  • [37] Bui, V. M., Huynh, B. L. C., Pham, N. K. T., Nguyen, T. A. T., Nguyen, T. T. T., Nguyen, K. P. P., Nguyen, T. P. (2021). Usneaceratins A and B, two new secondary metabolites from the lichen Usnea ceratina. Natural Product Research, 1-6.
  • [38] Cansaran, D., Kahya, D., Yurdakulol, E. and Atakol, O. (2006). Identification and quantitation of usnic acid from the lichen Usnea species of Anatolia and antimicrobial activity. Zeitschrift für Naturforschung C., 61(11-12): 773–776.

Assessment of the Antibacterial Potency of Usnea sp. against Foodborne Pathogens

Year 2022, , 342 - 349, 30.06.2022
https://doi.org/10.7240/jeps.1091148

Abstract

ABSTRACT
The increase in the incidence of foodborne diseases has been demonstrated by epidemiological studies, and the adverse impact on the socio-economic development of countries has been also reported by health authorities. The combat against foodborne pathogens through the use of natural biosources has become the focus of recent research. Lichens produce several secondary metabolites with various biological activities including antibacterial, antifungal, anti-cancer etc. due to competition with other living things in their surrounding environment. In this perspective, we aimed to investigate the antibacterial properties of Usnea sp. that collected from Kastamonu, Turkey against five foodborne pathogens in the present study. These tested bacteria included both Gram-positive and Gram-negative ones. Our data demonstrated that the acetone extracts of Usnea sp. had antibacterial efficiencies especially against Gram-positive bacteria tested (C. perfringens, S. aureus, and B. cereus) at varying percentages. This potential antibacterial activity of Usnea sp. suggests that it can be used in the food industry. Since it has already been reported to be used in dishes or ingredients of bread, it gives the idea that it may be used as a food additive (such as a preservative, extending shelf life). However, detailed studies for its toxicity or the dosages that do not be toxic should be done.

References

  • [1] The Centers for Disease Control and Prevention (CDC) (2018). Estimates of foodborne illness in the United States. https://www.cdc.gov/foodborneburden/index.html. (Accessed Nov 5, 2018).
  • [2] İrfan, E. (2016). Yeni ve yeniden önem kazanan gıda kaynaklı bakteriyel zoonozların epidemiyolojisi. Veteriner Hekimler Derneği Dergisi, 87(2), 63-76.
  • [3] Kearney, G.D. (2018). Introduction to Foodborne Illness Outbreak Investigation, Environmental Public Health: The Practitioner’s Guide 2018, American Public Health Association. DOI: 10.2105/9780875532943ch13.
  • [4] World Health Organization. (2008). Foodborne disease outbreaks: guidelines for investigation and control. World Health Organization.
  • [5] Akhtar, S., Sarker, M. R., Hossain, A. (2014). Microbiological food safety: a dilemma of developing societies. Critical Reviews in Microbiology, 40(4), 348-359.
  • [6] Miao, J., Liang, Y., Chen, L., Wang, W., Wang, J., Li, B., ... & Xu, Z. (2017). Formation and development of Staphylococcus biofilm: with focus on food safety. Journal of Food Safety, 37(4), e12358.
  • [7] World Health Organization (WHO) (2020). World Health Organization. Food safety and foodborne illness. In World Health Organization fact sheet. https://www.who.int/news-room/fact-sheets/detail/food-safety. (Accessed March 21, 2022).
  • [8] Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922-935.
  • [9] Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., Bordes, C. (2019). Antibacterial properties of polyphenols: characterization and QSAR (Quantitative structure–activity relationship) models. Frontiers in Microbiology, 10, 829.
  • [10] Baptista, R. C., Horita, C. N., Sant'Ana, A. S. (2020). Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Research International, 127, 108762.
  • [11] Jafarzadeh, S., Nafchi, A. M., Salehabadi, A., Oladzad-Abbasabadi, N., Jafari, S. M. (2021). Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 291, 102405.
  • [12] Sayyari, Z., Rabani, M., Farahmandfar, R., Esmaeilzadeh Kenari, R., Mousavi Nadoshan, R. (2021). The effect of nanocomposite edible coating enriched with Foeniculum vulgare essential oil on the shelf life of Oncorhynchus mykiss fish fillets during the storage. Journal of Aquatic Food Product Technology, 30(5), 579-595.
  • [13] Kanatt, S. R., Chander, R., Sharma, A. (2010). Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. International Journal of Food Science & Technology, 45(2), 216-222.
  • [14] Márquez-Rodríguez, A. S., Nevárez-Baca, S., Lerma-Hernández, J. C., Hernández-Ochoa, L. R., Nevárez-Moorillon, G. V., Gutiérrez-Méndez, N., Muñoz-Castellanos, L.N., Salas, E. (2020). In vitro antibacterial activity of Hibiscus sabdariffa L. phenolic extract and its in situ application on shelf-life of beef meat. Foods, 9(8), 1080.
  • [15] Raja, A., Gajalakshmi, P., Raja, M., Mahroop, M. (2010). Drugs from the natural bio sources for human disease. International Journal of Pharmacology, 6(4), 360-363.
  • [16] Ivančević, B., Matavuly, M., & Karaman, M. (2012). Fungi (mushrooms and lichens) in Serbian legislation. Biologia Serbica, 34(1-2).
  • [17] Molnár, K., Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforschung C, 65(3-4), 157-173.
  • [18] Zhao, Y., Wang, M., Xu, B. (2021). A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. Journal of Functional Foods, 80, 104283.
  • [19] John V, Turk A. (2017). Turkiye Likenleri Listesi [A checklist of the lichens of Turkey]. Istanbul: Nezahat Gokyigit Botanik Bahcesi Yayını.
  • [20] Gökalsın, B., Berber, D., Özyiğitoğlu, G. Ç., Yeşilada, E., & Sesal, N. C. (2020). Quorum sensing attenuation properties of ethnobotanically valuable lichens against Pseudomonas aeruginosa. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 154(6), 792-799.
  • [21] Fowler, K. D. (2013). Journey to Enlichenment: Lichens in the Atlantic World Food Chain.
  • [22] Guo, L., Shi, Q., Fang, J. L., Mei, N., Ali, A. A., Lewis, S. M., Leakey, J.E.A., Frankos, V. H. (2008). Review of usnic acid and Usnea barbata toxicity. Journal of Environmental Science and Health, Part C, 26(4), 317-338.
  • [23] Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W., Wolseley, P. A. (2009). The Lichens of Great Britain and Ireland. British Lichen Society, London. 1046 pp.
  • [24] Srivastava, P., Upreti, D. K., Dhole, T. N., Srivastava, A. K., Nayak, M. T. (2013). Antimicrobial property of extracts of Indian lichen against human pathogenic bacteria. Interdisciplinary Perspectives on Infectious Diseases, 2013.
  • [25] Madamombe, I. T., Afolayan, A. J. (2003). Evaluation of antimicrobial activity of extracts from South African Usnea barbata. Pharmaceutical Biology, 41(3), 199-202.
  • [26] Bharti, S., & Nayaka, S. (2022). Evaluation of some traditional therapeutic properties of Usnea longissima (Ascomycota, lichenized fungi): antimicrobial, antiquorum and antioxidant. Journal of Microbiology, Biotechnology and Food Sciences, 11(4), e3163-e3163.
  • [27] Londoñe-Bailon, P., Sánchez-Robinet, C., Alvarez-Guzman, G. (2019). In vitro antibacterial, antioxidant and cytotoxic activity of methanol-acetone extracts from Antarctic lichens (Usnea antarctica and Usnea aurantiaco-atra). Polar Science, 22, 100477.
  • [28] Sepahvand, A., Studzińska-Sroka, E., Ramak, P., Karimian, V. (2021). Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. Journal of Ethnopharmacology, 268, 113656.
  • [29] Prashith Kekuda, T.R., Mesta, A. R., Vinayaka, K. S., Darshini, S. M., & Akarsh, S. (2016). Antimicrobial activity of Usnea ghattensis G. Awasthi and Usnea undulata Stirt. Journal of Chemical and Pharmaceutical Research, 8(12), 83-88.
  • [30] Behera, B. C., Verma, N., Sonone, A., Makhija, U. (2005). Antioxidant and antibacterial activities of lichen Usnea ghattensis in vitro. Biotechnology Letters, 27(14), 991-995.
  • [31] Shrestha, G. (2015). Exploring the antibacterial, antioxidant, and anticancer properties of lichen metabolites. Brigham Young University.
  • [32] Manoharachary, C., Nagaraju, D. (2016). Antimicrobial and antifungal activity of Leptogium javanicum mont. and Usnea ghattensis awasthi. Int. J. Mod. Chem. Appl. Sci, 3, 444-445.
  • [33] Bate, P. N. N., Orock, A. E., Nyongbela, K. D., Babiaka, S. B., Kukwah, A., Ngemenya, M. N. (2020). In vitro activity against multi-drug resistant bacteria and cytotoxicity of lichens collected from Mount Cameroon. Journal of King Saud University-Science, 32(1), 614-619.
  • [34] Weckesser, S., Engel, K., Simon-Haarhaus, B., Wittmer, A., Pelz, K., & Schempp, C. Á. (2007). Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine, 14(7-8), 508-516.
  • [35] Pandey, A. (2017). Lichens: a resource chest of herbal antimicrobial compounds. Int J Theoretic Appl Sci., 9, 137-146.
  • [36] Žugić, A., Tadić, V., Kundaković, T., & Savić, S. (2018). Chemical composition and biological activities of the extracts and secondary metabolites of lichens belonging to the genus Usnea, Parmeliaceae. Lekovite sirovine, (38), 68-80.
  • [37] Bui, V. M., Huynh, B. L. C., Pham, N. K. T., Nguyen, T. A. T., Nguyen, T. T. T., Nguyen, K. P. P., Nguyen, T. P. (2021). Usneaceratins A and B, two new secondary metabolites from the lichen Usnea ceratina. Natural Product Research, 1-6.
  • [38] Cansaran, D., Kahya, D., Yurdakulol, E. and Atakol, O. (2006). Identification and quantitation of usnic acid from the lichen Usnea species of Anatolia and antimicrobial activity. Zeitschrift für Naturforschung C., 61(11-12): 773–776.
There are 38 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Orçun Toksöz 0000-0002-4863-3232

İpek Türkmenoğlu 0000-0002-5828-3854

Didem Berber 0000-0001-5813-160X

Cenk Sesal 0000-0002-0737-0122

Publication Date June 30, 2022
Published in Issue Year 2022

Cite

APA Toksöz, O., Türkmenoğlu, İ., Berber, D., Sesal, C. (2022). Assessment of the Antibacterial Potency of Usnea sp. against Foodborne Pathogens. International Journal of Advances in Engineering and Pure Sciences, 34(2), 342-349. https://doi.org/10.7240/jeps.1091148
AMA Toksöz O, Türkmenoğlu İ, Berber D, Sesal C. Assessment of the Antibacterial Potency of Usnea sp. against Foodborne Pathogens. JEPS. June 2022;34(2):342-349. doi:10.7240/jeps.1091148
Chicago Toksöz, Orçun, İpek Türkmenoğlu, Didem Berber, and Cenk Sesal. “Assessment of the Antibacterial Potency of Usnea Sp. Against Foodborne Pathogens”. International Journal of Advances in Engineering and Pure Sciences 34, no. 2 (June 2022): 342-49. https://doi.org/10.7240/jeps.1091148.
EndNote Toksöz O, Türkmenoğlu İ, Berber D, Sesal C (June 1, 2022) Assessment of the Antibacterial Potency of Usnea sp. against Foodborne Pathogens. International Journal of Advances in Engineering and Pure Sciences 34 2 342–349.
IEEE O. Toksöz, İ. Türkmenoğlu, D. Berber, and C. Sesal, “Assessment of the Antibacterial Potency of Usnea sp. against Foodborne Pathogens”, JEPS, vol. 34, no. 2, pp. 342–349, 2022, doi: 10.7240/jeps.1091148.
ISNAD Toksöz, Orçun et al. “Assessment of the Antibacterial Potency of Usnea Sp. Against Foodborne Pathogens”. International Journal of Advances in Engineering and Pure Sciences 34/2 (June 2022), 342-349. https://doi.org/10.7240/jeps.1091148.
JAMA Toksöz O, Türkmenoğlu İ, Berber D, Sesal C. Assessment of the Antibacterial Potency of Usnea sp. against Foodborne Pathogens. JEPS. 2022;34:342–349.
MLA Toksöz, Orçun et al. “Assessment of the Antibacterial Potency of Usnea Sp. Against Foodborne Pathogens”. International Journal of Advances in Engineering and Pure Sciences, vol. 34, no. 2, 2022, pp. 342-9, doi:10.7240/jeps.1091148.
Vancouver Toksöz O, Türkmenoğlu İ, Berber D, Sesal C. Assessment of the Antibacterial Potency of Usnea sp. against Foodborne Pathogens. JEPS. 2022;34(2):342-9.