Research Article
BibTex RIS Cite

Microscope and Solidification Equipment Design to Study in Real Time the Fundamentals of Microstructure Evolution

Year 2024, , 79 - 92, 25.03.2024
https://doi.org/10.7240/jeps.1434359

Abstract

Solidification microstructure is the decisive parameter in determination of all kinds of properties in materials produced by casting, additive manufacturing, and welding. In order to control and optimize the microstructure, first, the microstructure evolution dynamics has to be understood. Although there have been many attempts to understand microstructure with post-mortem studies, real-time investigation is necessary to apprehend what happens when a microstructure decisive parameter such as growth velocity changes. Real-time investigation is especially important for determination of microstructure in industrial applications such as casting, additive manufacturing, and welding, where the solidification parameters such as velocity, composition, temperature gradient etc. change during the process.

In this work, in order to investigate solidification dynamics and microstructure evolution in real time, a special microscope and solidification setups were designed, and get manufactured. The details of the microscopy system are given along with the directional solidification setups. Example outputs of this technique including temperature gradient measurements, typical setting parameters, and microstructures are reported. It is shown that this unique equipment opens the way to understand the solidification dynamics and microstructure evolution even in metallic systems in three dimensions, and hence the material properties.

References

  • [1] Akamatsu, S., Bottin-Rousseau, S., Serefoglu, M., & Faivre, G. (2012). A theory of thin lamellar eutectic growth with anisotropic interphase boundaries. Acta Materialia, 60(6-7), 3199-3205.
  • [2] Akamatsu, S., Bottin-Rousseau, S., Şerefoğlu, M., & Faivre, G. (2012). Lamellar eutectic growth with anisotropic interphase boundaries: Experimental study using the rotating directional solidification method. Acta Materialia, 60(6–7), 3206-3214.
  • [3] Akamatsu, S., Moulinet, S., & Faivre, G. (2001). The formation of lamellar-eutectic grains in thin samples. Metallurgical And Materials Transactions A, 32A, 2039-2048.
  • [4] Akamatsu, S., & Nguyen-Thi, H. (2016). In situ observation of solidification patterns in diffusive conditions. Acta Materialia, 108, 325-346.
  • [5] Bottin-Rousseau, S., Şerefoğlu, M., Yücetürk, S., Faivre, G., & Akamatsu, S. (2016). Stability of three-phase ternary-eutectic growth patterns in thin sample. Acta Materialia, 109, 259-266.
  • [6] Caroli, B., Caroli, C., Faivre, G., & Mergy, J. (1992). Lamellar eutectic Growth of CBr4-C2Cl6: effect of crystal anisotropy on lamellar orientations and wavelength dispersiono. Journal of Crystal Growth, 118, 135-150.
  • [7] Ginibre, M., Akamatsu, S., & Faivre, G. (1997). Experimental Determination of the Stability Diagram of a Lamellar Eutectic Growth Front. The American Physical Society- Physical Review E, 56(1), 780.
  • [8] Glicksman, M. E. (1984). Free Dendritic Growth. Materials Science and Engineering, 65(1), 45-55.
  • [9] Hunt, J. D., & Hurle, D. T. J. (1968). The Structures of Faceted/Nonfaceted Eutectics. Transactions of the Metallurgical Society of AIME, 242, 1043.
  • [10] Jackson, K. A., & Hunt, J. D. (1965). Transparent Compounds That Freeze Like Metals. Acta Metallurgica, 13, 1212.
  • [11] Jackson, K. A., & Hunt, J. D. (1966). Lamellar and Rod Eutectic Growth. Transactions of the Metallurgical Society of AIME, 236(8), 1129.
  • [12] Lindemann, G. R., Chao, P., Nikitin, V., De Andrade, V., De Graef, M., & Shahani, A. J. (2024). Complexity and evolution of a three-phase eutectic during coarsening uncovered by 4D nano-imaging. Acta Materialia, 266, 119684.
  • [13] Mathiesen, R. H., Arnberg, L., Ramsøskar, K., Weitkamp, T., Rau, C., & Snigirev, A. (2002). Time-resolved x-ray imaging of aluminum alloy solidification processes. Metallurgical and Materials Transactions B, 33(4), 613-623. doi:10.1007/s11663-002-0041-2
  • [14] Mohagheghi, S., Bottin-Rousseau, S., Akamatsu, S., & Serefoglu, M. (2020). Decoupled versus coupled growth dynamics of an irregular eutectic alloy. Scripta Materialia, 189, 11-15.
  • [15] Mohagheghi, S., Bottin-Rousseau, S., & Şerefoğlu, M. (2023). In-situ investigation of the solidification dynamics in an irregular eutectic alloy. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • [16] Mohagheghi, S., & Serefoglu, M. (2019). On the Growth Dynamics of Nearly-Locked Grain in the Three-Phase In-Bi-Sn Eutectic System. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 50A(11), 5221-5233.
  • [17] Mohagheghi, S., & Şerefoğlu, M. (2017). Dynamics of spacing adjustment and recovery mechanisms of ABAC-type growth pattern in ternary eutectic systems. Journal of Crystal Growth, 470, 66-74.
  • [18] Mohagheghi, S., & Şerefoğlu, M. (2018). Quasi-isotropic and locked grain growth dynamics in a three-phase eutectic system. Acta Materialia, 151, 432-442.
  • [19] Napolitano, R. E., & Serefoglu, M. (2012). Control and Interpretation of Finite-Size Effects and Initial Morphology in Directional Solidification of a Rod-Type Eutectic Transparent Metal-Analog. JOM, 64(1), 68-75.
  • [20] Reinhart, G., Mangelinck-Noël, N., Nguyen-Thi, H., Schenk, T., Gastaldi, J., Billia, B., Baruchel, J. (2005). Investigation of columnar–equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography. Materials Science and Engineering: A, 413-414, 384-388.
  • [21] Salvo, L., Suéry, M., Marmottant, A., Limodin, N., & Bernard, D. (2010). 3D imaging in material science: Application of X-ray tomography. Comptes Rendus Physique, 11(9), 641-649.
  • [22] Serefoglu, M., Bottin-Rousseau, S., & Akamatsu, S. (2023). Lamella-rod pattern transition and confinement effects during eutectic growth. Acta Materialia, 242.
  • [23] Serefoglu, M., & Napolitano, R. E. (2008). On the selection of rod-type eutectic morphologies: Geometrical constraint and array orientation. Acta Materialia, 56(15), 3862-3873.
  • [24] Şerefoğlu, M., & Napolitano, R. E. (2009). Onset of rod eutectic morphology in directional solidification. International Journal of Cast Metals Research, 22(1-4), 228-231.
  • [25] Şerefoğlu, M., & Napolitano, R. E. (2011). On the role of initial conditions in the selection of eutectic onset mechanisms in directional growth. Acta Materialia, 59(3), 1048-1057.
  • [26] Sturz, L., Witusiewicz, V. T., Hecht, U., & Rex, S. (2004). Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth. Journal of Crystal Growth, 270, 273-282.
  • [27] Witusiewicz, V. T., Hecht, U., Sturz, L., & Rex, S. (2006). Phase Equilibria and eutectic growth in ternary organic system (D) Camphor-Neopentylglycol-Succinonitrile. Journal of Crystal Growth, 286, 431-439.
  • [28] Witusiewicz, V. T., Sturz, L., Hecht, U., & Rex, S. (2004a). Thermodynamic description and unidirectional solidification of eutectic organic alloys: I. Succinonitrile-(D)camphor System. Acta Materialia, 52, 4561-4571.
  • [29] Witusiewicz, V. T., Sturz, L., Hecht, U., & Rex, S. (2004b). Thermodynamic description and unidirectional solidification of eutectic organic alloys: II. (CH3)(2)C(CH2OH)(2)-(NH2)(CH3)C(CH2OH)(2) system. Acta Materialia, 52(17), 5071-5081.
  • [30] Witusiewicz, V. T., Sturz, L., Hecht, U., & Rex, S. (2004c). Thermodynamic description and unidirectional solidification of eutectic organic alloys: III. Binary systems neopentylglycol-(D)camphor and amino-methyl-propanediol-(D)camphor. Acta Materialia, 52(19), 5519.

Mikroyapı Gelişiminin Temellerini Gerçek Zamanlı Olarak İncelemek için Mikroskop ve Katılaştırma Ekipmanı Tasarımı

Year 2024, , 79 - 92, 25.03.2024
https://doi.org/10.7240/jeps.1434359

Abstract

Katılaşma mikroyapısı, döküm, eklemeli imalat ve kaynak yoluyla üretilen malzemelerde malzeme özelliklerini belirleyen en önemli parametrelerden biridir. Mikroyapıyı kontrol etmek ve optimize etmek için öncelikle mikroyapı evrim dinamiklerinin anlaşılması gerekir. Post-mortem çalışmalarla mikroyapıyı anlamak için birçok girişimde bulunulmasına rağmen, büyüme hızı gibi mikroyapıyı belirleyen bir parametre değiştiğinde ne olacağını anlamak için gerçek zamanlı araştırmalar gereklidir. Gerçek zamanlı inceleme, özellikle hız, kompozisyon, sıcaklık gradyanı vb. gibi katılaşma parametrelerinin işlem sırasında değiştiği döküm, katmanlı imalat ve kaynak gibi endüstriyel uygulamalarda katılaşma mikroyapısının ve dolayısıyla malzeme özelliklerinin belirlenmesi için çok önemlidir.

Bu çalışmada, katılaşma dinamiklerini ve mikroyapı gelişimini gerçek zamanlı olarak incelemek amacıyla özel bir mikroskop ve katılaşma düzenekleri tasarlanmış ve imal edilmiştir. Yönlü katılaşma deney düzenekleri ile birlikte mikroskopi sisteminin detayları sunulmaktadır. Sıcaklık gradyanı ölçümleri, tipik kontrol parametreleri ve mikroyapılar dahil olmak üzere bu tekniğin örnek çıktıları raporlanmıştır. Bu özel üretim ekipmanın, metalik sistemlerde dahi katılaşma dinamiklerini ve mikroyapı gelişimini üç boyutlu olarak anlamanın ve böylelikle malzeme özelliklerini belirlemenin yolunu açtığı gösterilmiştir.

References

  • [1] Akamatsu, S., Bottin-Rousseau, S., Serefoglu, M., & Faivre, G. (2012). A theory of thin lamellar eutectic growth with anisotropic interphase boundaries. Acta Materialia, 60(6-7), 3199-3205.
  • [2] Akamatsu, S., Bottin-Rousseau, S., Şerefoğlu, M., & Faivre, G. (2012). Lamellar eutectic growth with anisotropic interphase boundaries: Experimental study using the rotating directional solidification method. Acta Materialia, 60(6–7), 3206-3214.
  • [3] Akamatsu, S., Moulinet, S., & Faivre, G. (2001). The formation of lamellar-eutectic grains in thin samples. Metallurgical And Materials Transactions A, 32A, 2039-2048.
  • [4] Akamatsu, S., & Nguyen-Thi, H. (2016). In situ observation of solidification patterns in diffusive conditions. Acta Materialia, 108, 325-346.
  • [5] Bottin-Rousseau, S., Şerefoğlu, M., Yücetürk, S., Faivre, G., & Akamatsu, S. (2016). Stability of three-phase ternary-eutectic growth patterns in thin sample. Acta Materialia, 109, 259-266.
  • [6] Caroli, B., Caroli, C., Faivre, G., & Mergy, J. (1992). Lamellar eutectic Growth of CBr4-C2Cl6: effect of crystal anisotropy on lamellar orientations and wavelength dispersiono. Journal of Crystal Growth, 118, 135-150.
  • [7] Ginibre, M., Akamatsu, S., & Faivre, G. (1997). Experimental Determination of the Stability Diagram of a Lamellar Eutectic Growth Front. The American Physical Society- Physical Review E, 56(1), 780.
  • [8] Glicksman, M. E. (1984). Free Dendritic Growth. Materials Science and Engineering, 65(1), 45-55.
  • [9] Hunt, J. D., & Hurle, D. T. J. (1968). The Structures of Faceted/Nonfaceted Eutectics. Transactions of the Metallurgical Society of AIME, 242, 1043.
  • [10] Jackson, K. A., & Hunt, J. D. (1965). Transparent Compounds That Freeze Like Metals. Acta Metallurgica, 13, 1212.
  • [11] Jackson, K. A., & Hunt, J. D. (1966). Lamellar and Rod Eutectic Growth. Transactions of the Metallurgical Society of AIME, 236(8), 1129.
  • [12] Lindemann, G. R., Chao, P., Nikitin, V., De Andrade, V., De Graef, M., & Shahani, A. J. (2024). Complexity and evolution of a three-phase eutectic during coarsening uncovered by 4D nano-imaging. Acta Materialia, 266, 119684.
  • [13] Mathiesen, R. H., Arnberg, L., Ramsøskar, K., Weitkamp, T., Rau, C., & Snigirev, A. (2002). Time-resolved x-ray imaging of aluminum alloy solidification processes. Metallurgical and Materials Transactions B, 33(4), 613-623. doi:10.1007/s11663-002-0041-2
  • [14] Mohagheghi, S., Bottin-Rousseau, S., Akamatsu, S., & Serefoglu, M. (2020). Decoupled versus coupled growth dynamics of an irregular eutectic alloy. Scripta Materialia, 189, 11-15.
  • [15] Mohagheghi, S., Bottin-Rousseau, S., & Şerefoğlu, M. (2023). In-situ investigation of the solidification dynamics in an irregular eutectic alloy. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • [16] Mohagheghi, S., & Serefoglu, M. (2019). On the Growth Dynamics of Nearly-Locked Grain in the Three-Phase In-Bi-Sn Eutectic System. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 50A(11), 5221-5233.
  • [17] Mohagheghi, S., & Şerefoğlu, M. (2017). Dynamics of spacing adjustment and recovery mechanisms of ABAC-type growth pattern in ternary eutectic systems. Journal of Crystal Growth, 470, 66-74.
  • [18] Mohagheghi, S., & Şerefoğlu, M. (2018). Quasi-isotropic and locked grain growth dynamics in a three-phase eutectic system. Acta Materialia, 151, 432-442.
  • [19] Napolitano, R. E., & Serefoglu, M. (2012). Control and Interpretation of Finite-Size Effects and Initial Morphology in Directional Solidification of a Rod-Type Eutectic Transparent Metal-Analog. JOM, 64(1), 68-75.
  • [20] Reinhart, G., Mangelinck-Noël, N., Nguyen-Thi, H., Schenk, T., Gastaldi, J., Billia, B., Baruchel, J. (2005). Investigation of columnar–equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography. Materials Science and Engineering: A, 413-414, 384-388.
  • [21] Salvo, L., Suéry, M., Marmottant, A., Limodin, N., & Bernard, D. (2010). 3D imaging in material science: Application of X-ray tomography. Comptes Rendus Physique, 11(9), 641-649.
  • [22] Serefoglu, M., Bottin-Rousseau, S., & Akamatsu, S. (2023). Lamella-rod pattern transition and confinement effects during eutectic growth. Acta Materialia, 242.
  • [23] Serefoglu, M., & Napolitano, R. E. (2008). On the selection of rod-type eutectic morphologies: Geometrical constraint and array orientation. Acta Materialia, 56(15), 3862-3873.
  • [24] Şerefoğlu, M., & Napolitano, R. E. (2009). Onset of rod eutectic morphology in directional solidification. International Journal of Cast Metals Research, 22(1-4), 228-231.
  • [25] Şerefoğlu, M., & Napolitano, R. E. (2011). On the role of initial conditions in the selection of eutectic onset mechanisms in directional growth. Acta Materialia, 59(3), 1048-1057.
  • [26] Sturz, L., Witusiewicz, V. T., Hecht, U., & Rex, S. (2004). Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth. Journal of Crystal Growth, 270, 273-282.
  • [27] Witusiewicz, V. T., Hecht, U., Sturz, L., & Rex, S. (2006). Phase Equilibria and eutectic growth in ternary organic system (D) Camphor-Neopentylglycol-Succinonitrile. Journal of Crystal Growth, 286, 431-439.
  • [28] Witusiewicz, V. T., Sturz, L., Hecht, U., & Rex, S. (2004a). Thermodynamic description and unidirectional solidification of eutectic organic alloys: I. Succinonitrile-(D)camphor System. Acta Materialia, 52, 4561-4571.
  • [29] Witusiewicz, V. T., Sturz, L., Hecht, U., & Rex, S. (2004b). Thermodynamic description and unidirectional solidification of eutectic organic alloys: II. (CH3)(2)C(CH2OH)(2)-(NH2)(CH3)C(CH2OH)(2) system. Acta Materialia, 52(17), 5071-5081.
  • [30] Witusiewicz, V. T., Sturz, L., Hecht, U., & Rex, S. (2004c). Thermodynamic description and unidirectional solidification of eutectic organic alloys: III. Binary systems neopentylglycol-(D)camphor and amino-methyl-propanediol-(D)camphor. Acta Materialia, 52(19), 5519.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Physical Metallurgy
Journal Section Research Articles
Authors

Melis Şerefoğlu Kaya 0000-0002-9321-2699

Early Pub Date March 18, 2024
Publication Date March 25, 2024
Submission Date February 9, 2024
Acceptance Date February 26, 2024
Published in Issue Year 2024

Cite

APA Şerefoğlu Kaya, M. (2024). Mikroyapı Gelişiminin Temellerini Gerçek Zamanlı Olarak İncelemek için Mikroskop ve Katılaştırma Ekipmanı Tasarımı. International Journal of Advances in Engineering and Pure Sciences, 36(1), 79-92. https://doi.org/10.7240/jeps.1434359
AMA Şerefoğlu Kaya M. Mikroyapı Gelişiminin Temellerini Gerçek Zamanlı Olarak İncelemek için Mikroskop ve Katılaştırma Ekipmanı Tasarımı. JEPS. March 2024;36(1):79-92. doi:10.7240/jeps.1434359
Chicago Şerefoğlu Kaya, Melis. “Mikroyapı Gelişiminin Temellerini Gerçek Zamanlı Olarak İncelemek için Mikroskop Ve Katılaştırma Ekipmanı Tasarımı”. International Journal of Advances in Engineering and Pure Sciences 36, no. 1 (March 2024): 79-92. https://doi.org/10.7240/jeps.1434359.
EndNote Şerefoğlu Kaya M (March 1, 2024) Mikroyapı Gelişiminin Temellerini Gerçek Zamanlı Olarak İncelemek için Mikroskop ve Katılaştırma Ekipmanı Tasarımı. International Journal of Advances in Engineering and Pure Sciences 36 1 79–92.
IEEE M. Şerefoğlu Kaya, “Mikroyapı Gelişiminin Temellerini Gerçek Zamanlı Olarak İncelemek için Mikroskop ve Katılaştırma Ekipmanı Tasarımı”, JEPS, vol. 36, no. 1, pp. 79–92, 2024, doi: 10.7240/jeps.1434359.
ISNAD Şerefoğlu Kaya, Melis. “Mikroyapı Gelişiminin Temellerini Gerçek Zamanlı Olarak İncelemek için Mikroskop Ve Katılaştırma Ekipmanı Tasarımı”. International Journal of Advances in Engineering and Pure Sciences 36/1 (March 2024), 79-92. https://doi.org/10.7240/jeps.1434359.
JAMA Şerefoğlu Kaya M. Mikroyapı Gelişiminin Temellerini Gerçek Zamanlı Olarak İncelemek için Mikroskop ve Katılaştırma Ekipmanı Tasarımı. JEPS. 2024;36:79–92.
MLA Şerefoğlu Kaya, Melis. “Mikroyapı Gelişiminin Temellerini Gerçek Zamanlı Olarak İncelemek için Mikroskop Ve Katılaştırma Ekipmanı Tasarımı”. International Journal of Advances in Engineering and Pure Sciences, vol. 36, no. 1, 2024, pp. 79-92, doi:10.7240/jeps.1434359.
Vancouver Şerefoğlu Kaya M. Mikroyapı Gelişiminin Temellerini Gerçek Zamanlı Olarak İncelemek için Mikroskop ve Katılaştırma Ekipmanı Tasarımı. JEPS. 2024;36(1):79-92.