Research Article
BibTex RIS Cite

On a Simple Characterization of Conformally Flat 4-Dimensional Spaces of Neutral Signature

Year 2024, , 295 - 300, 26.09.2024
https://doi.org/10.7240/jeps.1521289

Abstract

In this work, the full characterization of 4-dimensional conformally flat spaces of neutral signature is given by using methods based on holonomy structure. Possible holonomy types are obtained for the spaces in question and several remarks are made. Various examples are presented related to this investigation.

Supporting Institution

TÜBİTAK 3501 - Career Development Program (CAREER)

Project Number

122F478

Thanks

This work is supported by TÜBİTAK (The Scientific and Technological Research Council of Türkiye) Career Development Program (3501) under project number 122F478.

References

  • Catino, G. (2016). On conformally flat manifolds with constant positive scalar curvature. Proceedings of the American Mathematical Society, 144, 2627–2634.
  • Galaev, A. S. (2013). Conformally flat Lorentzian manifolds with special holonomy groups. Sbornik: Mathematics, 204(9), 1264.
  • Hall, G. S., & Lonie, D. P. (2000). Holonomy groups and spacetimes. Classical and Quantum Gravity, 17(6), 1369–1382.
  • Hall, G. (2012). Projective relatedness and conformal flatness. Central European Journal of Mathematics, 10(5), 1763–1770.
  • Goldman, W. M. (1983). Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3-manifolds. Transactions of the American Mathematical Society, 278(2), 573–583.
  • Hawking, S. W., & Ellis, G. F. R. (1973). The Large Scale Structure of Space-time, Cambridge.
  • Kuiper, N. H. (1949). On conformally-flat spaces in the large. Annals of Mathematics, 50(4), 916–924.
  • Kurita, M. (1955). On the holonomy group of the conformally flat Riemannian manifold. Nagoya Mathematical Journal, 9, 161–171.
  • Schoen, R., & Yau, S. T. (1988). Conformally flat manifolds, Kleinian groups and scalar curvature. Inventiones mathematicae, 92(1), 47–71.
  • Wang, Z., & Hall, G. (2013). Projective structure in 4-dimensional manifolds with metric signature (+,+,-,-). Journal of Geometry and Physics, 66, 37–49.
  • Hall, G. S. (2004). Symmetries and Curvature Structure in General Relativity. World Scientific.
  • Kobayashi, S., & Nomizu, K. (1963). Foundations of Differential Geometry. Interscience, (vol 1), New York.
  • Ambrose, W., & Singer, I. M. (1953). A theorem on holonomy. Transactions of the American Mathematical Society, 75(3), 428–443.
  • Hall, G., & Kırık, B. (2015). Recurrence structures in 4-dimensional manifolds with metric of signature (+,+,-,-). Journal of Geometry and Physics, 98, 262–274.
  • Hall, G. (2018). Curvature and holonomy in 4-dimensional manifolds admitting a metric. Balkan Journal of Geometry and Its Applications, 23(1), 44–57.
  • Schell, J. F. (1961). Classification of four-dimensional Riemannian spaces. Journal of Mathematical Physics, 2, 202–206.
  • Hall, G., & Wang, Z. (2012). Projective structure in 4-dimensional manifolds with positive definite metrics. Journal of Geometry and Physics, 62, 449–463.

4-Boyutlu Nötr Metrik İşaretli Konformal Düz Uzayların Basit Bir Karakterizasyonu Üzerine

Year 2024, , 295 - 300, 26.09.2024
https://doi.org/10.7240/jeps.1521289

Abstract

Bu çalışmada, 4-boyutlu nötr metrik işaretli konformal düz uzayların tam karakterizasyonu dolanım yapısına dayalı yöntemler kullanılarak verilmiştir. Söz konusu uzaylar için muhtemel dolanım tipleri elde edilmiş ve birtakım açıklamalar yapılmıştır. Bu araştırmaya ilişkin çeşitli örnekler sunulmuştur.

Supporting Institution

TÜBİTAK 3501 - Kariyer Geliştirme Programı

Project Number

122F478

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 122F478 Numaralı proje ile desteklenmiştir. Projeye verdiği destekten ötürü TÜBİTAK’a teşekkürlerimi sunarım.

References

  • Catino, G. (2016). On conformally flat manifolds with constant positive scalar curvature. Proceedings of the American Mathematical Society, 144, 2627–2634.
  • Galaev, A. S. (2013). Conformally flat Lorentzian manifolds with special holonomy groups. Sbornik: Mathematics, 204(9), 1264.
  • Hall, G. S., & Lonie, D. P. (2000). Holonomy groups and spacetimes. Classical and Quantum Gravity, 17(6), 1369–1382.
  • Hall, G. (2012). Projective relatedness and conformal flatness. Central European Journal of Mathematics, 10(5), 1763–1770.
  • Goldman, W. M. (1983). Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3-manifolds. Transactions of the American Mathematical Society, 278(2), 573–583.
  • Hawking, S. W., & Ellis, G. F. R. (1973). The Large Scale Structure of Space-time, Cambridge.
  • Kuiper, N. H. (1949). On conformally-flat spaces in the large. Annals of Mathematics, 50(4), 916–924.
  • Kurita, M. (1955). On the holonomy group of the conformally flat Riemannian manifold. Nagoya Mathematical Journal, 9, 161–171.
  • Schoen, R., & Yau, S. T. (1988). Conformally flat manifolds, Kleinian groups and scalar curvature. Inventiones mathematicae, 92(1), 47–71.
  • Wang, Z., & Hall, G. (2013). Projective structure in 4-dimensional manifolds with metric signature (+,+,-,-). Journal of Geometry and Physics, 66, 37–49.
  • Hall, G. S. (2004). Symmetries and Curvature Structure in General Relativity. World Scientific.
  • Kobayashi, S., & Nomizu, K. (1963). Foundations of Differential Geometry. Interscience, (vol 1), New York.
  • Ambrose, W., & Singer, I. M. (1953). A theorem on holonomy. Transactions of the American Mathematical Society, 75(3), 428–443.
  • Hall, G., & Kırık, B. (2015). Recurrence structures in 4-dimensional manifolds with metric of signature (+,+,-,-). Journal of Geometry and Physics, 98, 262–274.
  • Hall, G. (2018). Curvature and holonomy in 4-dimensional manifolds admitting a metric. Balkan Journal of Geometry and Its Applications, 23(1), 44–57.
  • Schell, J. F. (1961). Classification of four-dimensional Riemannian spaces. Journal of Mathematical Physics, 2, 202–206.
  • Hall, G., & Wang, Z. (2012). Projective structure in 4-dimensional manifolds with positive definite metrics. Journal of Geometry and Physics, 62, 449–463.
There are 17 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Articles
Authors

Bahar Kırık Rácz 0000-0002-2932-0740

Project Number 122F478
Early Pub Date September 19, 2024
Publication Date September 26, 2024
Submission Date July 23, 2024
Acceptance Date August 28, 2024
Published in Issue Year 2024

Cite

APA Kırık Rácz, B. (2024). On a Simple Characterization of Conformally Flat 4-Dimensional Spaces of Neutral Signature. International Journal of Advances in Engineering and Pure Sciences, 36(3), 295-300. https://doi.org/10.7240/jeps.1521289
AMA Kırık Rácz B. On a Simple Characterization of Conformally Flat 4-Dimensional Spaces of Neutral Signature. JEPS. September 2024;36(3):295-300. doi:10.7240/jeps.1521289
Chicago Kırık Rácz, Bahar. “On a Simple Characterization of Conformally Flat 4-Dimensional Spaces of Neutral Signature”. International Journal of Advances in Engineering and Pure Sciences 36, no. 3 (September 2024): 295-300. https://doi.org/10.7240/jeps.1521289.
EndNote Kırık Rácz B (September 1, 2024) On a Simple Characterization of Conformally Flat 4-Dimensional Spaces of Neutral Signature. International Journal of Advances in Engineering and Pure Sciences 36 3 295–300.
IEEE B. Kırık Rácz, “On a Simple Characterization of Conformally Flat 4-Dimensional Spaces of Neutral Signature”, JEPS, vol. 36, no. 3, pp. 295–300, 2024, doi: 10.7240/jeps.1521289.
ISNAD Kırık Rácz, Bahar. “On a Simple Characterization of Conformally Flat 4-Dimensional Spaces of Neutral Signature”. International Journal of Advances in Engineering and Pure Sciences 36/3 (September 2024), 295-300. https://doi.org/10.7240/jeps.1521289.
JAMA Kırık Rácz B. On a Simple Characterization of Conformally Flat 4-Dimensional Spaces of Neutral Signature. JEPS. 2024;36:295–300.
MLA Kırık Rácz, Bahar. “On a Simple Characterization of Conformally Flat 4-Dimensional Spaces of Neutral Signature”. International Journal of Advances in Engineering and Pure Sciences, vol. 36, no. 3, 2024, pp. 295-00, doi:10.7240/jeps.1521289.
Vancouver Kırık Rácz B. On a Simple Characterization of Conformally Flat 4-Dimensional Spaces of Neutral Signature. JEPS. 2024;36(3):295-300.