Research Article
BibTex RIS Cite

EpiXS Simülasyonu ile Al 2124 Matrisli Kompozitlerde Gama Zırhlama Analizi

Year 2025, Volume: 37 Issue: 4, 415 - 421, 23.12.2025
https://doi.org/10.7240/jeps.1699205

Abstract

Al 2124 alaşımına ağırlıkça %3, %6, %9 ve %12 oranlarında CoSO4 seramik malzemesi eklenerek teorik olarak tasarlanan kompozit malzemeler, EpiXS programı kullanılarak 1 keV ile 1x10⁶ keV enerji aralığında gama geçirgenlik özellikleri açısından analiz edildi. Serbest ortalama mesafe (MFP), yarı değer kalınlığı (HVL), doğrusal zayıflama katsayısı (LAC) parametreleri, 241Am, 133Ba, 109Cd, 57Co, 60Co,152Eu, 137Cs vd. gama radyasyon kaynakları kullanılarak analiz edilmiştir. Analiz sonucun da Al 2124 içerisindeki ağırlıkça CoSO4’ün artması ile beraber kompozit malzemelerin LAC değerleri artar iken HVL ve MFP değerleri azaldığı tespit edilmiştir. 1 keV ile 1x106 keV foton enerji aralığında Al 2124 malzemesi yaklaşık 1.49x10-4 cm - 7.72 cm aralığında değişen değerleri ile en yüksek HVL değerini alırken yaklaşık 4661.03 cm-1 - 0.09 cm-1 değişen derler ile en düşük LAC değerlerini almıştır. En yüksek LAC değerlerini ise içeresinde ağırlıkça en yüksek CoSO4 oranına sahip Al 2124+ %12 CoSO4 kompozit malzemesi yaklaşık 6417.7 cm-1- 0.095 cm-1 arasında değişen LAC değerlerini almıştır. En iyi foton zırhlama performansını göstermesinden dolayı HVL değeri yaklaşık 1.08x10-4 cm- 7.3 cm arasında değişen değerler almıştır.

References

  • Hamisu, A., Khiter, O., Al-Zhrani, S., Haridh, W. S. B., Al-Hadeethi, Y., Sayyed, M. I., & Tijani, S. A. (2024). The use of nanomaterial polymeric materials as ionizing radiation shields. Radiation Physics and Chemistry, 216, 111448.
  • Babeer, A. M., Sayyed, M. I., Amin, H. Y., El-razek Mahmoud, A., & Sadeq, M. S. (2024). Composition impacts of La2O3 on the structure and radiation shielding parameters of NiO–BaO–B2O3 glasses. Optical Materials, 147, 114622.
  • Aldawood, S., Asemi, N. N., Kassim, H., Aziz, A. A., Saeed, W. S., & Al-Odayni, A. B. (2024). Gamma radiation shielding by titanium alloy reinforced by polymeric composite materials. Journal of Radiation Research and Applied Sciences, 17, 100793.
  • Ghule, P. G., Bholane, G. T., Joshi, R. P., Dahiwale, S. S., Shelke, P. N., & Dhole, S. D. (2024). Gamma radiation shielding properties of unsaturated polyester /Bi2O3 composites: An experimental, theoretical and simulation approach. Radiation Physics and Chemistry, 216, 111452.
  • Babeer, A. M., Sayyed, M. I., Morshidy, H. Y., El-razek Mahmoud, Abdo, M. A., & Sadeq, M. S. (2023). High transparency of PbO–BaO–Fe2O3–SrO–B2O3 glasses with improved radiation shielding properties. Optical Materials, 145, 114387.
  • Bawazeer, O., & Sadeq, M. S. (2021). Compositional dependency of transparency, optical and radiation shielding parameters inside Gd2O3–Fe2O3–Na2O–SiO2–B2O3 glass. Ceramics International, 50, 159–173.
  • Rauch, M., Nwankpa, U. V., & Hascoet, J. Y. (2021). Investigation of deposition strategy on wire and arc additive manufacturing of aluminium components. Journal of Advanced Joining Processes, 4, 100074.
  • Sukumaran, K., Ravikumar, K. K., Pillai, S. G. K., Rajan, T. P. D., Ravi, M., Pillai, R. M., & Pai, B. C. (2008). Studies on squeeze casting of Al 2124 alloy and 2124-10% SiCp metal matrix composite. Materials Science and Engineering A, 490, 235–241.
  • Lin, Y. C., Li, L. T., & Xia, Y. C. (2011). A new method to predict the metadynamic recrystallization behavior in 2124 aluminum alloy. Computational Materials Science, 50, 2038–2043.
  • Zhang, F., He, Z., Lu, K., Zhan, Z., Li, Z., & Wang, X. (2023). Interfacial microstructure and mechanical properties of 2124 aluminum alloy reinforced by AlCoCrFeNi high entropy alloy. Journal of Materials Research and Technology, 26, 8846-8856.
  • Hao, H., Ye, D., & Chen, C. (2014). Strain ratio effects on low-cycle fatigue behavior and deformation microstructure of 2124-T851 aluminum alloy. Materials Science & Engineering A, 605, 151–159.
  • Akkas, A., Tugrul, A. B., & Tazegul, O. (2025). Shielding performance of Al–B4C–W composite materials against gamma-ray, beta and neutron radiations. Radiation Physics and Chemistry, 232, 112662.
  • Çağlar, S. (2025). Impact of B4C reinforcement on the microstructure, wear, hardness, corrosion behavior, and radiation shielding properties of Al-40Sm2O3 hybrid composites. Nuclear Engineering and Technology, 57, 103566.
  • Gaylan, Y., Dag, I. E., Caglar, S., & Avar, B. (2025). Investigation of mechanical and radiation shielding properties of Sm–Sm2O3 reinforced Al–B4C composite. Radiation Physics and Chemistry, 226, 112325.
  • Kursun, C., Gao, M., Yalcin, A. O., Parrey, K. A., & Gaylan, Y. (2024). Structure, mechanical, and neutron radiation shielding characteristics of mechanically milled nanostructured (100-x)Al-xGd2O3 metal composites. Ceramics International, 50, 27154–27164.
  • Shi, J., Lv, Z., Wang, J., Tang, W., Liu, Y., Yang, Z., Yang, J., Yang, Z., & Ma, S. (2025). A finite element study on the irradiation-induced mechanical behaviors of aluminum-matrix radiation-shielding composites. Journal of Nuclear Materials, 603, 155440.
  • Patnaik, P. (2002). Handbook of Inorganic Chemicals. McGraw-Hill Professional, 1 edition. https://rushim.ru/books/spravochniki/handbook-of-inorganic-chemicals.pdf
  • Hila, F. C., Asuncion-Astronomo, A., Dingle, C. A. M., Jecong, J. F. M., Javier-Hila, A. M. V., Gili, M. B. Z., Balderas, C. V., Lopez, G. E. P., Guillermo, N. R. D., & Amorsolo, A. V., Jr. (2021). EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiation Physics and Chemistry, 182, 109331.
  • Sayyed, M. I., Kamışlıoğlu, M., & Jecong, J. F. M. (2022). Investigation of photon attenuation factors for TeO2-Bi2O3–B2O3 glass systems using SRIM codes, EPICS2017 library and Phy-X/ PSD2. Optik - International Journal for Light and Electron Optics, 257, 168832.
  • Acikgoz, A., Demircan, G., Yılmaz, D., Aktas, B., Yalcin, S., & Yorulmaz, N. (2022). Structural, mechanical, radiation shielding properties and albedoparameters of alumina borate glasses: Role of CeO2 and Er2O3. Materials Science and Engineering B, 276, 115519.
  • Prabhu, N. S., Sayyed, M. I., Almuqrin, A. H., Khandaker, M. U., Mahmoud, K. A., Yasmin, S., & Kamath, S. D. (2021). Network-modifying role of Er3+ ions on the structural, optical, mechanical, and radiation shielding properties of ZnF2–BaO–Al2O3–Li2O–B2O3 glass. Radiation Physics and Chemistry, 200, 110228.
  • Pires, L. F., & Souza, G. B. D. (2025). Radiation shielding properties of materials used in the aeronautical industry. Radiation Physics and Chemistry, 235, 112820.
  • Gaylan, Y., & Caglar, S. (2025). Effect of Sm2O3 on radiation shielding and mechanical properties of Al-Sm2O3 composites. Ceramics International, 51, 10133–10142.
  • Uyar, E., Akay, D., & Pul, M. (2025). Investigation of radiation shielding properties of Al2024, ZA27 (Zamac) and Cu composites reinforced with nano graphene and multi-walled carbon nanotubes. Radiation Physics and Chemistry, 237, 113129.
  • Mutuwong, C., Bootjomchai, C., Chaiphaksa, W., Cheewasukhanont, W., Sommat, V., Kaewjaeng, S., Ornketphon, O., Intachai, N., Kothan, S., Kim, H. J., & Kaewkhao, J. (2025). Photon and thermal neutron shielding behaviors of aluminum calcium fluoroborate glass modified with barium oxide: FLUKA Monte Carlo, XCOM and experimental investigations. Annals of Nuclear Energy, 210, 110863.
  • Kilic, G., Durmus, H., Birdogan, S., Ilik, E., Perişanoğlu, E. K., Saltık, S., Guler, Ö., ALMisned, G., & Tekin, H. O. (2025). Nanoarchitectonics and radiation mitigation in Sm2O3-doped lithium borotellurite glass systems: From amorphous harmony to localized order. Journal of Non-Crystalline Solids, 666, 123674.
  • Khozemy, E. E., Salem, E. F., & Ali, A. E. H. (2022). Radiation shielding and enhanced thermal characteristics of high-density polyethylene reinforced with Al (OH)3/Pb2O3 for radioactive waste management. Radiation Physics and Chemistry, 193, 109976.
  • Nasrabadi, M., Anbaran, H. K., & Ebrahimibasabi, E. (2025). Experimental study of radiation shielding and mechanical properties of polymer nanocomposite reinforced with CeO2 NPs. Materials Today Communications, 48, 113369.
  • Yaghi, M. A., Sayyed, M. I., Manjunatha, Mhareb, M. H. A., Bennal, A. S., & Hamad, M. Kh. (2026). Radiation shielding and mechanical performance of lead-free novel glasses: Insights from Geant4 Monte Carlo simulations. Radiation Physics and Chemistry, 239, 113335.
  • Urooge, S., Shahzad, K., Fazil, S., Liaqat, K., Irshad, A., Khan, A., Hassan, R., & Alam, M. (2026). Fabrication and characterization of TiO2 reinforced polydimethylsiloxane nanocomposite for simulation based gamma radiation shielding. Radiation Physics and Chemistry, 239, 113270.
  • Sathish, K. V., Sridhar, K. N., Seenappa, L., Manjunatha, H. C., Vidya, Y. S., Reddy, B. C., Manjunatha, S., Santhosh, A. N., Munirathnam, R., Raj, A. C., Gupta, P. S. D., & Sankarshan, B. M. (2023). X-ray/gamma radiation shielding properties of Aluminium- BariumeZinc Oxide nanoparticles synthesized via low temperature solution combustion method. Nuclear Engineering and Technology, 55, 1519–1526

Gamma Shielding Analysis in Al 2124 Matrix Composites with EpiXS Simulation

Year 2025, Volume: 37 Issue: 4, 415 - 421, 23.12.2025
https://doi.org/10.7240/jeps.1699205

Abstract

Composite materials theoretically designed by adding CoSO4 ceramic material to Al 2124 alloy in proportions of 3-6-9-12% by weight were analyzed for gamma transmittance properties in the energy range of 1 keV to 1x10⁶ keV using the EpiXS program. The mean free path (MFP), half-value layer (HVL), and linear attenuation coefficient (LAC) parameters were analyzed using gamma radiation sources, including 241Am, 133Ba, 109Cd, 57Co, 60Co, 152Eu, and 137Cs. As a result of the analysis, it was determined that with the increase in CoSO4 by weight in Al 2124, the LAC values of the composite materials increased, while the HVL and MFP values decreased. In the photon energy range from 1 keV to 1x106 keV, the Al 2124 material had the highest HVL value with values ranging from approximately 1.49x10-4 cm to 7.72 cm, while it had the lowest LAC values with values ranging from approximately 4661.03 cm-1 to 0.09 cm-1. The highest LAC values were obtained by the Al 2124+ 12% CoSO4 composite material, which has the highest CoSO4 ratio by weight, with LAC values ranging from approximately 6417.7 cm-1 to 0.095 cm-1. Due to its best photon shielding performance, its HVL had values ranging from approximately 1.08x10-4 cm to 7.3 cm.

References

  • Hamisu, A., Khiter, O., Al-Zhrani, S., Haridh, W. S. B., Al-Hadeethi, Y., Sayyed, M. I., & Tijani, S. A. (2024). The use of nanomaterial polymeric materials as ionizing radiation shields. Radiation Physics and Chemistry, 216, 111448.
  • Babeer, A. M., Sayyed, M. I., Amin, H. Y., El-razek Mahmoud, A., & Sadeq, M. S. (2024). Composition impacts of La2O3 on the structure and radiation shielding parameters of NiO–BaO–B2O3 glasses. Optical Materials, 147, 114622.
  • Aldawood, S., Asemi, N. N., Kassim, H., Aziz, A. A., Saeed, W. S., & Al-Odayni, A. B. (2024). Gamma radiation shielding by titanium alloy reinforced by polymeric composite materials. Journal of Radiation Research and Applied Sciences, 17, 100793.
  • Ghule, P. G., Bholane, G. T., Joshi, R. P., Dahiwale, S. S., Shelke, P. N., & Dhole, S. D. (2024). Gamma radiation shielding properties of unsaturated polyester /Bi2O3 composites: An experimental, theoretical and simulation approach. Radiation Physics and Chemistry, 216, 111452.
  • Babeer, A. M., Sayyed, M. I., Morshidy, H. Y., El-razek Mahmoud, Abdo, M. A., & Sadeq, M. S. (2023). High transparency of PbO–BaO–Fe2O3–SrO–B2O3 glasses with improved radiation shielding properties. Optical Materials, 145, 114387.
  • Bawazeer, O., & Sadeq, M. S. (2021). Compositional dependency of transparency, optical and radiation shielding parameters inside Gd2O3–Fe2O3–Na2O–SiO2–B2O3 glass. Ceramics International, 50, 159–173.
  • Rauch, M., Nwankpa, U. V., & Hascoet, J. Y. (2021). Investigation of deposition strategy on wire and arc additive manufacturing of aluminium components. Journal of Advanced Joining Processes, 4, 100074.
  • Sukumaran, K., Ravikumar, K. K., Pillai, S. G. K., Rajan, T. P. D., Ravi, M., Pillai, R. M., & Pai, B. C. (2008). Studies on squeeze casting of Al 2124 alloy and 2124-10% SiCp metal matrix composite. Materials Science and Engineering A, 490, 235–241.
  • Lin, Y. C., Li, L. T., & Xia, Y. C. (2011). A new method to predict the metadynamic recrystallization behavior in 2124 aluminum alloy. Computational Materials Science, 50, 2038–2043.
  • Zhang, F., He, Z., Lu, K., Zhan, Z., Li, Z., & Wang, X. (2023). Interfacial microstructure and mechanical properties of 2124 aluminum alloy reinforced by AlCoCrFeNi high entropy alloy. Journal of Materials Research and Technology, 26, 8846-8856.
  • Hao, H., Ye, D., & Chen, C. (2014). Strain ratio effects on low-cycle fatigue behavior and deformation microstructure of 2124-T851 aluminum alloy. Materials Science & Engineering A, 605, 151–159.
  • Akkas, A., Tugrul, A. B., & Tazegul, O. (2025). Shielding performance of Al–B4C–W composite materials against gamma-ray, beta and neutron radiations. Radiation Physics and Chemistry, 232, 112662.
  • Çağlar, S. (2025). Impact of B4C reinforcement on the microstructure, wear, hardness, corrosion behavior, and radiation shielding properties of Al-40Sm2O3 hybrid composites. Nuclear Engineering and Technology, 57, 103566.
  • Gaylan, Y., Dag, I. E., Caglar, S., & Avar, B. (2025). Investigation of mechanical and radiation shielding properties of Sm–Sm2O3 reinforced Al–B4C composite. Radiation Physics and Chemistry, 226, 112325.
  • Kursun, C., Gao, M., Yalcin, A. O., Parrey, K. A., & Gaylan, Y. (2024). Structure, mechanical, and neutron radiation shielding characteristics of mechanically milled nanostructured (100-x)Al-xGd2O3 metal composites. Ceramics International, 50, 27154–27164.
  • Shi, J., Lv, Z., Wang, J., Tang, W., Liu, Y., Yang, Z., Yang, J., Yang, Z., & Ma, S. (2025). A finite element study on the irradiation-induced mechanical behaviors of aluminum-matrix radiation-shielding composites. Journal of Nuclear Materials, 603, 155440.
  • Patnaik, P. (2002). Handbook of Inorganic Chemicals. McGraw-Hill Professional, 1 edition. https://rushim.ru/books/spravochniki/handbook-of-inorganic-chemicals.pdf
  • Hila, F. C., Asuncion-Astronomo, A., Dingle, C. A. M., Jecong, J. F. M., Javier-Hila, A. M. V., Gili, M. B. Z., Balderas, C. V., Lopez, G. E. P., Guillermo, N. R. D., & Amorsolo, A. V., Jr. (2021). EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiation Physics and Chemistry, 182, 109331.
  • Sayyed, M. I., Kamışlıoğlu, M., & Jecong, J. F. M. (2022). Investigation of photon attenuation factors for TeO2-Bi2O3–B2O3 glass systems using SRIM codes, EPICS2017 library and Phy-X/ PSD2. Optik - International Journal for Light and Electron Optics, 257, 168832.
  • Acikgoz, A., Demircan, G., Yılmaz, D., Aktas, B., Yalcin, S., & Yorulmaz, N. (2022). Structural, mechanical, radiation shielding properties and albedoparameters of alumina borate glasses: Role of CeO2 and Er2O3. Materials Science and Engineering B, 276, 115519.
  • Prabhu, N. S., Sayyed, M. I., Almuqrin, A. H., Khandaker, M. U., Mahmoud, K. A., Yasmin, S., & Kamath, S. D. (2021). Network-modifying role of Er3+ ions on the structural, optical, mechanical, and radiation shielding properties of ZnF2–BaO–Al2O3–Li2O–B2O3 glass. Radiation Physics and Chemistry, 200, 110228.
  • Pires, L. F., & Souza, G. B. D. (2025). Radiation shielding properties of materials used in the aeronautical industry. Radiation Physics and Chemistry, 235, 112820.
  • Gaylan, Y., & Caglar, S. (2025). Effect of Sm2O3 on radiation shielding and mechanical properties of Al-Sm2O3 composites. Ceramics International, 51, 10133–10142.
  • Uyar, E., Akay, D., & Pul, M. (2025). Investigation of radiation shielding properties of Al2024, ZA27 (Zamac) and Cu composites reinforced with nano graphene and multi-walled carbon nanotubes. Radiation Physics and Chemistry, 237, 113129.
  • Mutuwong, C., Bootjomchai, C., Chaiphaksa, W., Cheewasukhanont, W., Sommat, V., Kaewjaeng, S., Ornketphon, O., Intachai, N., Kothan, S., Kim, H. J., & Kaewkhao, J. (2025). Photon and thermal neutron shielding behaviors of aluminum calcium fluoroborate glass modified with barium oxide: FLUKA Monte Carlo, XCOM and experimental investigations. Annals of Nuclear Energy, 210, 110863.
  • Kilic, G., Durmus, H., Birdogan, S., Ilik, E., Perişanoğlu, E. K., Saltık, S., Guler, Ö., ALMisned, G., & Tekin, H. O. (2025). Nanoarchitectonics and radiation mitigation in Sm2O3-doped lithium borotellurite glass systems: From amorphous harmony to localized order. Journal of Non-Crystalline Solids, 666, 123674.
  • Khozemy, E. E., Salem, E. F., & Ali, A. E. H. (2022). Radiation shielding and enhanced thermal characteristics of high-density polyethylene reinforced with Al (OH)3/Pb2O3 for radioactive waste management. Radiation Physics and Chemistry, 193, 109976.
  • Nasrabadi, M., Anbaran, H. K., & Ebrahimibasabi, E. (2025). Experimental study of radiation shielding and mechanical properties of polymer nanocomposite reinforced with CeO2 NPs. Materials Today Communications, 48, 113369.
  • Yaghi, M. A., Sayyed, M. I., Manjunatha, Mhareb, M. H. A., Bennal, A. S., & Hamad, M. Kh. (2026). Radiation shielding and mechanical performance of lead-free novel glasses: Insights from Geant4 Monte Carlo simulations. Radiation Physics and Chemistry, 239, 113335.
  • Urooge, S., Shahzad, K., Fazil, S., Liaqat, K., Irshad, A., Khan, A., Hassan, R., & Alam, M. (2026). Fabrication and characterization of TiO2 reinforced polydimethylsiloxane nanocomposite for simulation based gamma radiation shielding. Radiation Physics and Chemistry, 239, 113270.
  • Sathish, K. V., Sridhar, K. N., Seenappa, L., Manjunatha, H. C., Vidya, Y. S., Reddy, B. C., Manjunatha, S., Santhosh, A. N., Munirathnam, R., Raj, A. C., Gupta, P. S. D., & Sankarshan, B. M. (2023). X-ray/gamma radiation shielding properties of Aluminium- BariumeZinc Oxide nanoparticles synthesized via low temperature solution combustion method. Nuclear Engineering and Technology, 55, 1519–1526
There are 31 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Research Article
Authors

Zübeyde Özkan 0000-0003-2901-7749

Submission Date May 16, 2025
Acceptance Date November 29, 2025
Publication Date December 23, 2025
Published in Issue Year 2025 Volume: 37 Issue: 4

Cite

APA Özkan, Z. (2025). Gamma Shielding Analysis in Al 2124 Matrix Composites with EpiXS Simulation. International Journal of Advances in Engineering and Pure Sciences, 37(4), 415-421. https://doi.org/10.7240/jeps.1699205
AMA Özkan Z. Gamma Shielding Analysis in Al 2124 Matrix Composites with EpiXS Simulation. JEPS. December 2025;37(4):415-421. doi:10.7240/jeps.1699205
Chicago Özkan, Zübeyde. “Gamma Shielding Analysis in Al 2124 Matrix Composites With EpiXS Simulation”. International Journal of Advances in Engineering and Pure Sciences 37, no. 4 (December 2025): 415-21. https://doi.org/10.7240/jeps.1699205.
EndNote Özkan Z (December 1, 2025) Gamma Shielding Analysis in Al 2124 Matrix Composites with EpiXS Simulation. International Journal of Advances in Engineering and Pure Sciences 37 4 415–421.
IEEE Z. Özkan, “Gamma Shielding Analysis in Al 2124 Matrix Composites with EpiXS Simulation”, JEPS, vol. 37, no. 4, pp. 415–421, 2025, doi: 10.7240/jeps.1699205.
ISNAD Özkan, Zübeyde. “Gamma Shielding Analysis in Al 2124 Matrix Composites With EpiXS Simulation”. International Journal of Advances in Engineering and Pure Sciences 37/4 (December2025), 415-421. https://doi.org/10.7240/jeps.1699205.
JAMA Özkan Z. Gamma Shielding Analysis in Al 2124 Matrix Composites with EpiXS Simulation. JEPS. 2025;37:415–421.
MLA Özkan, Zübeyde. “Gamma Shielding Analysis in Al 2124 Matrix Composites With EpiXS Simulation”. International Journal of Advances in Engineering and Pure Sciences, vol. 37, no. 4, 2025, pp. 415-21, doi:10.7240/jeps.1699205.
Vancouver Özkan Z. Gamma Shielding Analysis in Al 2124 Matrix Composites with EpiXS Simulation. JEPS. 2025;37(4):415-21.