Research Article
BibTex RIS Cite

Otonom Taşıtların Toplu Ulaşım Sistemlerine Entegrasyonu: Potansiyel Trafik ve Çevresel Etkilerin Değerlendirilmesi

Year 2025, Volume: 37 Issue: 4, 430 - 443, 23.12.2025
https://doi.org/10.7240/jeps.1749662

Abstract

Otonom taşıtlar, toplu taşımada güvenliği artırma ve hizmet sürekliliğini sağlama potansiyeliyle çığır açıcı bir yenilik olarak son yıllarda öne çıkmaktadır. Kentsel ulaşım yapısını tamamen yeniden şekillendirme potansiyeli, bu araçları araştırmacıların odak noktası haline getirmiştir. Bu çalışma, İstanbul’daki gerçek toplu ulaşım ağları üzerinde, “tedbirli” ve “agresif” olarak tanımlanan iki farklı otonom otobüs sürüş davranışının etkilerini incelemektedir. Trafik verimliliği, güvenliği ve emisyonlar, açık kaynaklı trafik simülasyon platformu SUMO kullanılarak değerlendirilmiştir. İki farklı talep düzeyi (yoğun olmayan ve yoğun saatler), değişen katılım oranları ve iki şerit yönetim stratejisi (ayrılmış şerit ve karma trafik) incelenmiştir. Sonuçlar, tedbirli sürüş davranışının ortalama zaman kaybını artırdığını, agresif sürüş stratejilerinin ise katılım oranı arttıkça bu kaybı azalttığını göstermektedir. Ayrılmış şerit senaryosunda, agresif sürüşün tam uygulaması ortalama zaman kaybını yoğun olmayan saatlerde %400 oranında, yoğun saatlerde ise %240 oranında azaltırken; tedbirli sürüş bunu %360 oranında artırmaktadır. Trafik güvenliği açısından, %100 tedbirli sürüş oranında çakışmalar yoğun olmayan saatlerde %94, yoğun saatlerde %84 oranında azalmaktadır. Agresif sürüşte bu oranlar sırasıyla %63 ve %28’dir. Emisyon analiz sonuçlarına göre, ayrılmış şerit senaryolarında %57’ye varan azalmalar göstermektedir. Otonom otobüslerin en olumlu etkileri ayrılmış şeritlerde gözlemlenmiştir. Buna karşın, karma trafik ortamlarında ve düşük katılım oranlarında etkinlik belirgin biçimde azalmaktadır. Bulgular, trafik verimliliği ile güvenlik arasındaki dengeyi vurgulamakta ve dengeli uygulama stratejilerinin önemine dikkat çekmektedir.

References

  • BRT Centre of Excellence. (2023). Global BRTData. https://brtdata.org/
  • Palm, M., et al. (2024). Facing the future of transit ridership: shifting attitudes towards public transit and auto ownership among transit riders during COVID-19. Transportation (Amst)., 51(2), 645–671. doi: 10.1007/s11116-022-10344-2
  • Satiennam, T., Jaensirisak, S., Satiennam, W., & Detdamrong, S. (2016). Potential for modal shift by passenger car and motorcycle users towards Bus Rapid Transit (BRT) in an Asian developing city. IATSS Res., 39(2), 121–129. doi: 10.1016/j.iatssr.2015.03.002
  • Beck, M. J., Hensher, D. A., & Wei, E. (2020). Slowly coming out of COVID-19 restrictions in Australia: Implications for working from home and commuting trips by car and public transport. J. Transp. Geogr., 88, 102846. doi: 10.1016/j.jtrangeo.2020.102846
  • Goldbach, C., Sickmann, J., Pitz, T., & Zimasa, T. (2022). Towards autonomous public transportation: Attitudes and intentions of the local population. Transp. Res. Interdiscip. Perspect., 13. doi: 10.1016/j.trip.2021.100504
  • Brakewood, C., & Watkins, K. (2019). A literature review of the passenger benefits of real-time transit information. Transp. Rev., 39(3), 327–356. doi: 10.1080/01441647.2018.1472147
  • Ibraeva, A., Correia, G. H. de A., Silva, C., & Antunes, A. P. (2020). Transit-oriented development: A review of research achievements and challenges. Transp. Res. Part A Policy Pract., 132, 110–130. doi: 10.1016/j.tra.2019.10.018
  • Berrebi, S. J., Joshi, S., & Watkins, K. E. (2021). On bus ridership and frequency. Transp. Res. Part A Policy Pract., 148, 140–154. doi: 10.1016/j.tra.2021.03.005
  • Mishra, R., Pulugurtha, S. S., & Mathew, S. (2023). Examining associations with on-time performance and identifying relevant road network, demographic, socioeconomic and land use characteristics within the bus stop vicinity for proactive and reliable public transportation system planning. Multimodal Transp., 2(4), 100094. doi: 10.1016/j.multra.2023.100094
  • Yue, Q., Feng, Z., Shao, C., Huang, Z., & Ruan, X. (2024). Factors impacting bus selection: Differences between the middle and later stages of COVID-19. Multimodal Transp., 3(1), 100106. doi: 10.1016/j.multra.2023.100106
  • Wong, Y. Z., Hensher, D. A., & Mulley, C. (2020). Mobility as a service (MaaS): Charting a future context. Transp. Res. Part A Policy Pract., 131, 5–19. doi: 10.1016/j.tra.2019.09.030
  • Hasselwander, M., Nieland, S., Dematera-Contreras, K., & Goletz, M. (2023). MaaS for the masses: Potential transit accessibility gains and required policies under Mobility-as-a-Service. Multimodal Transp., 2(3), 100086. doi: 10.1016/j.multra.2023.100086
  • Jun, W. K., An, M. H., & Choi, J. Y. (2022). Impact of the connected & autonomous vehicle industry on the Korean national economy using input-output analysis. Technol. Forecast. Soc. Change, 178, 121572. doi: 10.1016/j.techfore.2022.121572
  • Zhu, J., Tasic, I., & Qu, X. (2022). Flow-level coordination of connected and autonomous vehicles in multilane freeway ramp merging areas. Multimodal Transp., 1(1), 100005. doi: 10.1016/j.multra.2022.100005
  • Lazarus, J., et al. (2018). Shared Automated Mobility and Public Transport. 141–161.
  • Huang, K., Kockelman, K., & Gurumurthy, K. M. (2023). Innovations impacting the future of transportation: an overview of connected, automated, shared, and electric technologies. Transp. Lett., 15(6), 490–509. doi: 10.1080/19427867.2022.2070091
  • Gurumurthy, K. M., Kockelman, K. M., & Simoni, M. D. (2019). Benefits and Costs of Ride-Sharing in Shared Automated Vehicles across Austin, Texas: Opportunities for Congestion Pricing. Transp. Res. Rec. J. Transp. Res. Board, 2673(6), 548–556. doi: 10.1177/0361198119850785
  • Perrine, K. A., Kockelman, K. M., & Huang, Y. (2020). Anticipating long-distance travel shifts due to self-driving vehicles. J. Transp. Geogr., 82, 102547. doi: 10.1016/j.jtrangeo.2019.102547
  • Gurumurthy, K. M., Auld, J., & Kockelman, K. (2021). A system of shared autonomous vehicles for Chicago: Understanding the effects of geofencing the service. J. Transp. Land Use, 14(1), 933–948. doi: 10.5198/jtlu.2021.1926
  • Khan, Z. S., & Menéndez, M. (2025). No time for stopping: A Stop-Less Autonomous Modular (SLAM) bus service. Transp. Res. Part C Emerg. Technol., 171, 104888. doi: 10.1016/j.trc.2024.104888
  • Oikonomou, M. G., Sekadakis, M., Katrakazas, C., & Yannis, G. (2025). Analyzing the safety effects of different operating speeds for an autonomous shuttle bus service. Traffic Saf. Res., 9, e000089. doi: 10.55329/beui4479
  • Cai, X., Zhou, H., Ma, C., Li, X., & Ran, B. (2025). Evaluating Impacts of Public Transit and Automobiles During Connected and Automated Vehicle Adoption. J. Adv. Transp., 2025(1). doi: 10.1155/atr/4103948
  • Tirachini, A., Godachevich, J., Cats, O., Muñoz, J. C., & Soza-Parra, J. (2022). Headway variability in public transport: a review of metrics, determinants, effects for quality of service and control strategies. Transp. Rev., 42(3), 337–361. doi: 10.1080/01441647.2021.1977415
  • Bellone, M., Ismailogullari, A., Kantala, T., Mäkinen, S., Soe, R. M., & Kyyrö, M. Å. (2021). A cross-country comparison of user experience of public autonomous transport. Eur. Transp. Res. Rev., 13(1). doi: 10.1186/s12544-021-00477-3
  • Schomakers, E.-M., Lotz, V., Glawe, F., & Ziefle, M. (2023). The effect of design and behaviour of automated micro-vehicles for urban delivery on other road users’ perceptions. Multimodal Transp., 2(2), 100079. doi: 10.1016/j.multra.2023.100079
  • Weschke, J., Bahamonde-Birke, F. J., Gade, K., & Kazagli, E. (2021). Asking the Wizard-of-Oz: How experiencing autonomous buses affects preferences towards their use for feeder trips in public transport. Transp. Res. Part C Emerg. Technol., 133, 103454. doi: 10.1016/j.trc.2021.103454
  • Khan, M. A., Etminani-Ghasrodashti, R., Kermanshachi, S., Rosenberger, J. M., & Foss, A. (2023). A User and Ridership Evaluation of Shared Autonomous Vehicles. J. Urban Plan. Dev., 149(1). doi: 10.1061/JUPDDM.UPENG-3945
  • Liew, Y. W., Vafaei-Zadeh, A., Teoh, A. P., & Ramayah, T. (2024). Predicting Public Willingness to Use Autonomous Shuttles: Evidence from an Emerging Economy. Transp. Res. Rec., 2678(5), 736–757. doi: 10.1177/03611981231192099
  • Oh, S., Seshadri, R., Le, D.-T., Zegras, P. C., & Ben-Akiva, M. E. (2020). Evaluating Automated Demand Responsive Transit Using Microsimulation. IEEE Access, 8, 82551–82561. doi: 10.1109/ACCESS.2020.2991154
  • Alazzawi, S., Hummel, M., Kordt, P., Sickenberger, T., Wieseotte, C., & Wohak, O. (2018). Simulating the Impact of Shared, Autonomous Vehicles on Urban Mobility – a Case Study of Milan. UMO 2018-Simulating Autonomous and Intermodal Transport Systems, 94–76. doi: 10.29007/2n4h
  • Vosooghi, R., Kamel, J., Puchinger, J., Leblond, V., & Jankovic, M. (2019). Robo-Taxi service fleet sizing: assessing the impact of user trust and willingness-to-use. Transportation (Amst)., 46(6), 1997–2015. doi: 10.1007/s11116-019-10013-x
  • Istanbul Metropolitan Municipality. (2016). Istanbul Transport Annual Report. https://tuhim.ibb.gov.tr/media/2131/imm_transport_report.pdf
  • Karsan. (2022). E-ATAK Technical Specifications. https://www.karsan.com/tr/100-elektrikli/e-ata-12
  • Mourtakos, V., Oikonomou, M. G., Kopelias, P., Vlahogianni, E. I., & Yannis, G. (2022). Impacts of autonomous on-demand mobility service: A simulation experiment in the City of Athens. Transp. Lett., 14(10), 1138–1150. doi: 10.1080/19427867.2021.2000571
  • Sekar, N. K., Malaghan, V., & Pawar, D. S. (2023). Micro-Simulation Insights into the Safety and Operational Benefits of Autonomous Vehicles. J. Intell. Connect. Veh., 6(4), 202–210. doi: 10.26599/JICV.2023.9210007
  • Garg, M., & Bouroche, M. (2023). Can Connected Autonomous Vehicles Improve Mixed Traffic Safety Without Compromising Efficiency in Realistic Scenarios? IEEE Trans. Intell. Transp. Syst., 24(6), 6674–6689. doi: 10.1109/TITS.2023.3238889
  • Sadid, H., & Antoniou, C. (2023). Modelling and simulation of (connected) autonomous vehicles longitudinal driving behavior: A state‐of‐the‐art. IET Intell. Transp. Syst., 17(6), 1051–1071. doi: 10.1049/itr2.12337
  • Xie, H., et al. (2019). Quantifying the Impact of Autonomous Vehicles using Microscopic Simulations. Proceedings of the 12th ACM SIGSPATIAL International Workshop on Computational Transportation Science, 1–10. doi: 10.1145/3357000.3366145
  • Yao, Z., Deng, H., Chen, Z., He, X., Ai, Y., & Wu, Y. (2024). Linear internal stability for mixed traffic flow of CAVs with different automation levels. Phys. A Stat. Mech. its Appl., 642, 129759. doi: 10.1016/j.physa.2024.129759
  • Erdmann, J. (2015). SUMO’s Lane-Changing Model. 105–123.
  • Krajzewicz, D., Behrisch, M., Wagner, P., Luz, R., & Krumnow, M. (2015). Second Generation of Pollutant Emission Models for SUMO. 203–221.
  • Chin, H.-C., & Quek, S.-T. (1997). Measurement of traffic conflicts. Saf. Sci., 26(3), 169–185. doi: 10.1016/S0925-7535(97)00041-6
  • Mahmud, S. M. S., Ferreira, L., Hoque, M. S., & Tavassoli, A. (2017). Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs. IATSS Res., 41(4), 153–163. doi: 10.1016/j.iatssr.2017.02.001
  • Tafidis, P., & Pirdavani, A. (2023). Application of surrogate safety measures in higher levels of automated vehicles simulation studies: A review of the state of the practice. Traffic Inj. Prev., 24(3), 279–286. doi: 10.1080/15389588.2023.2176711
  • Gueriau, M., & Dusparic, I. (2020). Quantifying the impact of connected and autonomous vehicles on traffic efficiency and safety in mixed traffic. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 1–8. doi: 10.1109/ITSC45102.2020.9294174
  • Yazici, A., Levinson, H., Ilicali, M., Camkesen, N., & Kamga, C. (2013). A Bus Rapid Transit Line Case Study: Istanbul’s Metrobüs System. J. Public Transp., 16(1), 153–177. doi: 10.5038/2375-0901.16.1.8
  • Stogios, C., Kasraian, D., Roorda, M. J., & Hatzopoulou, M. (2019). Simulating impacts of automated driving behavior and traffic conditions on vehicle emissions. Transp. Res. Part D Transp. Environ., 76, 176–192. doi: 10.1016/j.trd.2019.09.020
  • Oikonomou, M. G., Orfanou, F. P., Vlahogianni, E. I., & Yannis, G. (2020). Impacts of Autonomous Shuttle Services on Traffic, Safety and Environment for Future Mobility Scenarios. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 1–6. doi: 10.1109/ITSC45102.2020.9294576
  • Andreotti, E., Selpi, & Boyraz, P. (2023). Potential impact of autonomous vehicles in mixed traffic from simulation using real traffic flow. J. Intell. Connect. Veh., 6(1), 1–15. doi: 10.26599/JICV.2023.9210001
  • Chen, X., Wu, Z., & Liang, Y. (2023). Modeling Mixed Traffic Flow with Connected Autonomous Vehicles and Human-Driven Vehicles in Off-Ramp Diverging Areas. Sustainability, 15(7), 5651. doi: 10.3390/su15075651
  • Papadoulis, A., Imprialou, M., Feng, Y., & Quddus, M. (2024). Simulating and Modelling the Safety Impact of Connected and Autonomous Vehicles in Mixed Traffic: Platoon Size, Sensor Error, and Path Choice. Machines, 12(6), 371. doi: 10.3390/machines12060371
  • Karbasi, A., & O’Hern, S. (2022). Investigating the Impact of Connected and Automated Vehicles on Signalized and Unsignalized Intersections Safety in Mixed Traffic. Futur. Transp., 2(1), 24–40. doi: 10.3390/futuretransp2010002
  • Arvin, R., Khattak, A. J., Kamrani, M., & Rio-Torres, J. (2021). Safety evaluation of connected and automated vehicles in mixed traffic with conventional vehicles at intersections. J. Intell. Transp. Syst., 25(2), 170–187. doi: 10.1080/15472450.2020.1834392

Integrating Autonomous Buses into Public Transport Systems: An Assessment of Potential Traffic & Environmental Impacts

Year 2025, Volume: 37 Issue: 4, 430 - 443, 23.12.2025
https://doi.org/10.7240/jeps.1749662

Abstract

The concept of autonomous buses (ABs) is emerging as a transformative innovation in public transport, with the potential to enhance safety and ensure service reliability. Their ability to reshape urban transport patterns has become a main focus of research. This study investigates the impact of two AB driving behaviours, defensive and aggressive, on real public transport networks in Istanbul. Traffic efficiency, safety, and emissions were evaluated using the open-source traffic simulation platform SUMO. Two demand levels (off-peak and peak hours), varying penetration rates, and two management strategies (dedicated lanes and mixed traffic) were analysed to assess their effects. Results show that AB-defensive behaviour increases average time loss, whereas AB-aggressive strategies reduce it as penetration rises. In dedicated lane scenarios, full deployment of AB-aggressive driving reduces time loss by up to 4.0 times in off-peak and 2.4 times in peak hours compared to the baseline, while AB-defensive driving increases it by up to 3.6 times. Regarding safety, at a 100% AB-defensive rate, conflicts decrease by 94% and 84% in off-peak and peak hours, respectively, whereas AB-aggressive behaviour yields smaller reductions (63% and 28%). CO and HC emissions under dedicated lane scenarios decline by as much as 57%, with aggressive driving providing the greatest benefits. The promising effects of ABs are most evident in dedicated lanes, while in mixed traffic, especially at low penetration rates, their effectiveness declines. Overall, the findings highlight a trade-off between efficiency and safety, emphasizing the need for balanced deployment strategies.

References

  • BRT Centre of Excellence. (2023). Global BRTData. https://brtdata.org/
  • Palm, M., et al. (2024). Facing the future of transit ridership: shifting attitudes towards public transit and auto ownership among transit riders during COVID-19. Transportation (Amst)., 51(2), 645–671. doi: 10.1007/s11116-022-10344-2
  • Satiennam, T., Jaensirisak, S., Satiennam, W., & Detdamrong, S. (2016). Potential for modal shift by passenger car and motorcycle users towards Bus Rapid Transit (BRT) in an Asian developing city. IATSS Res., 39(2), 121–129. doi: 10.1016/j.iatssr.2015.03.002
  • Beck, M. J., Hensher, D. A., & Wei, E. (2020). Slowly coming out of COVID-19 restrictions in Australia: Implications for working from home and commuting trips by car and public transport. J. Transp. Geogr., 88, 102846. doi: 10.1016/j.jtrangeo.2020.102846
  • Goldbach, C., Sickmann, J., Pitz, T., & Zimasa, T. (2022). Towards autonomous public transportation: Attitudes and intentions of the local population. Transp. Res. Interdiscip. Perspect., 13. doi: 10.1016/j.trip.2021.100504
  • Brakewood, C., & Watkins, K. (2019). A literature review of the passenger benefits of real-time transit information. Transp. Rev., 39(3), 327–356. doi: 10.1080/01441647.2018.1472147
  • Ibraeva, A., Correia, G. H. de A., Silva, C., & Antunes, A. P. (2020). Transit-oriented development: A review of research achievements and challenges. Transp. Res. Part A Policy Pract., 132, 110–130. doi: 10.1016/j.tra.2019.10.018
  • Berrebi, S. J., Joshi, S., & Watkins, K. E. (2021). On bus ridership and frequency. Transp. Res. Part A Policy Pract., 148, 140–154. doi: 10.1016/j.tra.2021.03.005
  • Mishra, R., Pulugurtha, S. S., & Mathew, S. (2023). Examining associations with on-time performance and identifying relevant road network, demographic, socioeconomic and land use characteristics within the bus stop vicinity for proactive and reliable public transportation system planning. Multimodal Transp., 2(4), 100094. doi: 10.1016/j.multra.2023.100094
  • Yue, Q., Feng, Z., Shao, C., Huang, Z., & Ruan, X. (2024). Factors impacting bus selection: Differences between the middle and later stages of COVID-19. Multimodal Transp., 3(1), 100106. doi: 10.1016/j.multra.2023.100106
  • Wong, Y. Z., Hensher, D. A., & Mulley, C. (2020). Mobility as a service (MaaS): Charting a future context. Transp. Res. Part A Policy Pract., 131, 5–19. doi: 10.1016/j.tra.2019.09.030
  • Hasselwander, M., Nieland, S., Dematera-Contreras, K., & Goletz, M. (2023). MaaS for the masses: Potential transit accessibility gains and required policies under Mobility-as-a-Service. Multimodal Transp., 2(3), 100086. doi: 10.1016/j.multra.2023.100086
  • Jun, W. K., An, M. H., & Choi, J. Y. (2022). Impact of the connected & autonomous vehicle industry on the Korean national economy using input-output analysis. Technol. Forecast. Soc. Change, 178, 121572. doi: 10.1016/j.techfore.2022.121572
  • Zhu, J., Tasic, I., & Qu, X. (2022). Flow-level coordination of connected and autonomous vehicles in multilane freeway ramp merging areas. Multimodal Transp., 1(1), 100005. doi: 10.1016/j.multra.2022.100005
  • Lazarus, J., et al. (2018). Shared Automated Mobility and Public Transport. 141–161.
  • Huang, K., Kockelman, K., & Gurumurthy, K. M. (2023). Innovations impacting the future of transportation: an overview of connected, automated, shared, and electric technologies. Transp. Lett., 15(6), 490–509. doi: 10.1080/19427867.2022.2070091
  • Gurumurthy, K. M., Kockelman, K. M., & Simoni, M. D. (2019). Benefits and Costs of Ride-Sharing in Shared Automated Vehicles across Austin, Texas: Opportunities for Congestion Pricing. Transp. Res. Rec. J. Transp. Res. Board, 2673(6), 548–556. doi: 10.1177/0361198119850785
  • Perrine, K. A., Kockelman, K. M., & Huang, Y. (2020). Anticipating long-distance travel shifts due to self-driving vehicles. J. Transp. Geogr., 82, 102547. doi: 10.1016/j.jtrangeo.2019.102547
  • Gurumurthy, K. M., Auld, J., & Kockelman, K. (2021). A system of shared autonomous vehicles for Chicago: Understanding the effects of geofencing the service. J. Transp. Land Use, 14(1), 933–948. doi: 10.5198/jtlu.2021.1926
  • Khan, Z. S., & Menéndez, M. (2025). No time for stopping: A Stop-Less Autonomous Modular (SLAM) bus service. Transp. Res. Part C Emerg. Technol., 171, 104888. doi: 10.1016/j.trc.2024.104888
  • Oikonomou, M. G., Sekadakis, M., Katrakazas, C., & Yannis, G. (2025). Analyzing the safety effects of different operating speeds for an autonomous shuttle bus service. Traffic Saf. Res., 9, e000089. doi: 10.55329/beui4479
  • Cai, X., Zhou, H., Ma, C., Li, X., & Ran, B. (2025). Evaluating Impacts of Public Transit and Automobiles During Connected and Automated Vehicle Adoption. J. Adv. Transp., 2025(1). doi: 10.1155/atr/4103948
  • Tirachini, A., Godachevich, J., Cats, O., Muñoz, J. C., & Soza-Parra, J. (2022). Headway variability in public transport: a review of metrics, determinants, effects for quality of service and control strategies. Transp. Rev., 42(3), 337–361. doi: 10.1080/01441647.2021.1977415
  • Bellone, M., Ismailogullari, A., Kantala, T., Mäkinen, S., Soe, R. M., & Kyyrö, M. Å. (2021). A cross-country comparison of user experience of public autonomous transport. Eur. Transp. Res. Rev., 13(1). doi: 10.1186/s12544-021-00477-3
  • Schomakers, E.-M., Lotz, V., Glawe, F., & Ziefle, M. (2023). The effect of design and behaviour of automated micro-vehicles for urban delivery on other road users’ perceptions. Multimodal Transp., 2(2), 100079. doi: 10.1016/j.multra.2023.100079
  • Weschke, J., Bahamonde-Birke, F. J., Gade, K., & Kazagli, E. (2021). Asking the Wizard-of-Oz: How experiencing autonomous buses affects preferences towards their use for feeder trips in public transport. Transp. Res. Part C Emerg. Technol., 133, 103454. doi: 10.1016/j.trc.2021.103454
  • Khan, M. A., Etminani-Ghasrodashti, R., Kermanshachi, S., Rosenberger, J. M., & Foss, A. (2023). A User and Ridership Evaluation of Shared Autonomous Vehicles. J. Urban Plan. Dev., 149(1). doi: 10.1061/JUPDDM.UPENG-3945
  • Liew, Y. W., Vafaei-Zadeh, A., Teoh, A. P., & Ramayah, T. (2024). Predicting Public Willingness to Use Autonomous Shuttles: Evidence from an Emerging Economy. Transp. Res. Rec., 2678(5), 736–757. doi: 10.1177/03611981231192099
  • Oh, S., Seshadri, R., Le, D.-T., Zegras, P. C., & Ben-Akiva, M. E. (2020). Evaluating Automated Demand Responsive Transit Using Microsimulation. IEEE Access, 8, 82551–82561. doi: 10.1109/ACCESS.2020.2991154
  • Alazzawi, S., Hummel, M., Kordt, P., Sickenberger, T., Wieseotte, C., & Wohak, O. (2018). Simulating the Impact of Shared, Autonomous Vehicles on Urban Mobility – a Case Study of Milan. UMO 2018-Simulating Autonomous and Intermodal Transport Systems, 94–76. doi: 10.29007/2n4h
  • Vosooghi, R., Kamel, J., Puchinger, J., Leblond, V., & Jankovic, M. (2019). Robo-Taxi service fleet sizing: assessing the impact of user trust and willingness-to-use. Transportation (Amst)., 46(6), 1997–2015. doi: 10.1007/s11116-019-10013-x
  • Istanbul Metropolitan Municipality. (2016). Istanbul Transport Annual Report. https://tuhim.ibb.gov.tr/media/2131/imm_transport_report.pdf
  • Karsan. (2022). E-ATAK Technical Specifications. https://www.karsan.com/tr/100-elektrikli/e-ata-12
  • Mourtakos, V., Oikonomou, M. G., Kopelias, P., Vlahogianni, E. I., & Yannis, G. (2022). Impacts of autonomous on-demand mobility service: A simulation experiment in the City of Athens. Transp. Lett., 14(10), 1138–1150. doi: 10.1080/19427867.2021.2000571
  • Sekar, N. K., Malaghan, V., & Pawar, D. S. (2023). Micro-Simulation Insights into the Safety and Operational Benefits of Autonomous Vehicles. J. Intell. Connect. Veh., 6(4), 202–210. doi: 10.26599/JICV.2023.9210007
  • Garg, M., & Bouroche, M. (2023). Can Connected Autonomous Vehicles Improve Mixed Traffic Safety Without Compromising Efficiency in Realistic Scenarios? IEEE Trans. Intell. Transp. Syst., 24(6), 6674–6689. doi: 10.1109/TITS.2023.3238889
  • Sadid, H., & Antoniou, C. (2023). Modelling and simulation of (connected) autonomous vehicles longitudinal driving behavior: A state‐of‐the‐art. IET Intell. Transp. Syst., 17(6), 1051–1071. doi: 10.1049/itr2.12337
  • Xie, H., et al. (2019). Quantifying the Impact of Autonomous Vehicles using Microscopic Simulations. Proceedings of the 12th ACM SIGSPATIAL International Workshop on Computational Transportation Science, 1–10. doi: 10.1145/3357000.3366145
  • Yao, Z., Deng, H., Chen, Z., He, X., Ai, Y., & Wu, Y. (2024). Linear internal stability for mixed traffic flow of CAVs with different automation levels. Phys. A Stat. Mech. its Appl., 642, 129759. doi: 10.1016/j.physa.2024.129759
  • Erdmann, J. (2015). SUMO’s Lane-Changing Model. 105–123.
  • Krajzewicz, D., Behrisch, M., Wagner, P., Luz, R., & Krumnow, M. (2015). Second Generation of Pollutant Emission Models for SUMO. 203–221.
  • Chin, H.-C., & Quek, S.-T. (1997). Measurement of traffic conflicts. Saf. Sci., 26(3), 169–185. doi: 10.1016/S0925-7535(97)00041-6
  • Mahmud, S. M. S., Ferreira, L., Hoque, M. S., & Tavassoli, A. (2017). Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs. IATSS Res., 41(4), 153–163. doi: 10.1016/j.iatssr.2017.02.001
  • Tafidis, P., & Pirdavani, A. (2023). Application of surrogate safety measures in higher levels of automated vehicles simulation studies: A review of the state of the practice. Traffic Inj. Prev., 24(3), 279–286. doi: 10.1080/15389588.2023.2176711
  • Gueriau, M., & Dusparic, I. (2020). Quantifying the impact of connected and autonomous vehicles on traffic efficiency and safety in mixed traffic. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 1–8. doi: 10.1109/ITSC45102.2020.9294174
  • Yazici, A., Levinson, H., Ilicali, M., Camkesen, N., & Kamga, C. (2013). A Bus Rapid Transit Line Case Study: Istanbul’s Metrobüs System. J. Public Transp., 16(1), 153–177. doi: 10.5038/2375-0901.16.1.8
  • Stogios, C., Kasraian, D., Roorda, M. J., & Hatzopoulou, M. (2019). Simulating impacts of automated driving behavior and traffic conditions on vehicle emissions. Transp. Res. Part D Transp. Environ., 76, 176–192. doi: 10.1016/j.trd.2019.09.020
  • Oikonomou, M. G., Orfanou, F. P., Vlahogianni, E. I., & Yannis, G. (2020). Impacts of Autonomous Shuttle Services on Traffic, Safety and Environment for Future Mobility Scenarios. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 1–6. doi: 10.1109/ITSC45102.2020.9294576
  • Andreotti, E., Selpi, & Boyraz, P. (2023). Potential impact of autonomous vehicles in mixed traffic from simulation using real traffic flow. J. Intell. Connect. Veh., 6(1), 1–15. doi: 10.26599/JICV.2023.9210001
  • Chen, X., Wu, Z., & Liang, Y. (2023). Modeling Mixed Traffic Flow with Connected Autonomous Vehicles and Human-Driven Vehicles in Off-Ramp Diverging Areas. Sustainability, 15(7), 5651. doi: 10.3390/su15075651
  • Papadoulis, A., Imprialou, M., Feng, Y., & Quddus, M. (2024). Simulating and Modelling the Safety Impact of Connected and Autonomous Vehicles in Mixed Traffic: Platoon Size, Sensor Error, and Path Choice. Machines, 12(6), 371. doi: 10.3390/machines12060371
  • Karbasi, A., & O’Hern, S. (2022). Investigating the Impact of Connected and Automated Vehicles on Signalized and Unsignalized Intersections Safety in Mixed Traffic. Futur. Transp., 2(1), 24–40. doi: 10.3390/futuretransp2010002
  • Arvin, R., Khattak, A. J., Kamrani, M., & Rio-Torres, J. (2021). Safety evaluation of connected and automated vehicles in mixed traffic with conventional vehicles at intersections. J. Intell. Transp. Syst., 25(2), 170–187. doi: 10.1080/15472450.2020.1834392
There are 53 citations in total.

Details

Primary Language English
Subjects Transportation Engineering
Journal Section Research Article
Authors

Hasanburak Yücel 0000-0003-3446-9037

Murat Ergün 0000-0002-2789-8645

Submission Date July 24, 2025
Acceptance Date December 14, 2025
Publication Date December 23, 2025
Published in Issue Year 2025 Volume: 37 Issue: 4

Cite

APA Yücel, H., & Ergün, M. (2025). Integrating Autonomous Buses into Public Transport Systems: An Assessment of Potential Traffic & Environmental Impacts. International Journal of Advances in Engineering and Pure Sciences, 37(4), 430-443. https://doi.org/10.7240/jeps.1749662
AMA Yücel H, Ergün M. Integrating Autonomous Buses into Public Transport Systems: An Assessment of Potential Traffic & Environmental Impacts. JEPS. December 2025;37(4):430-443. doi:10.7240/jeps.1749662
Chicago Yücel, Hasanburak, and Murat Ergün. “Integrating Autonomous Buses into Public Transport Systems: An Assessment of Potential Traffic & Environmental Impacts”. International Journal of Advances in Engineering and Pure Sciences 37, no. 4 (December 2025): 430-43. https://doi.org/10.7240/jeps.1749662.
EndNote Yücel H, Ergün M (December 1, 2025) Integrating Autonomous Buses into Public Transport Systems: An Assessment of Potential Traffic & Environmental Impacts. International Journal of Advances in Engineering and Pure Sciences 37 4 430–443.
IEEE H. Yücel and M. Ergün, “Integrating Autonomous Buses into Public Transport Systems: An Assessment of Potential Traffic & Environmental Impacts”, JEPS, vol. 37, no. 4, pp. 430–443, 2025, doi: 10.7240/jeps.1749662.
ISNAD Yücel, Hasanburak - Ergün, Murat. “Integrating Autonomous Buses into Public Transport Systems: An Assessment of Potential Traffic & Environmental Impacts”. International Journal of Advances in Engineering and Pure Sciences 37/4 (December2025), 430-443. https://doi.org/10.7240/jeps.1749662.
JAMA Yücel H, Ergün M. Integrating Autonomous Buses into Public Transport Systems: An Assessment of Potential Traffic & Environmental Impacts. JEPS. 2025;37:430–443.
MLA Yücel, Hasanburak and Murat Ergün. “Integrating Autonomous Buses into Public Transport Systems: An Assessment of Potential Traffic & Environmental Impacts”. International Journal of Advances in Engineering and Pure Sciences, vol. 37, no. 4, 2025, pp. 430-43, doi:10.7240/jeps.1749662.
Vancouver Yücel H, Ergün M. Integrating Autonomous Buses into Public Transport Systems: An Assessment of Potential Traffic & Environmental Impacts. JEPS. 2025;37(4):430-43.