Research Article
BibTex RIS Cite

Hidroksiapatit / seryum oksit kompozitleri: Sinterleme, mikroyapısal, mekanik ve invitro biyoaktivite özellikleri

Year 2019, , 295 - 304, 01.11.2019
https://doi.org/10.7240/jeps.512240

Abstract

Effect of cerium
oxide (CeO2) additive on the microstructure, mechanical and invitro
bioactivity properties of a commercially synthetic hydroxyapatite (HA) was
investigated. HA without CeO2 started to decompose at 1100 oC,
but the decomposition temperature of the CeO2 added samples
decreased up to 900 oC. Decomposition rate of the sintered samples
increased as the sintering temperature reached to 1300 oC. It was
about 5.8% for monolithic HA, and increased to 11.4% when the CeO2
additive to HA reached to 2.5 wt%. SEM images showed that an excessive grain
growth as well as microcracks occured on the surface of monolithic HA when it
was sintered at the temperatures than that of 1100 oC. The
microcracks were also observed on the surface of HA-CeO2 composites,
when they were sintered at 1300 oC. The composite of HA-0.5CeO2
sintered at 1100 oC possess the higher fracture toughness (Kıc)
(2.510 ± 0.225 MPam1/2) and the higher compressive strength (152.73
± 6.31 MPa) compared to other HA-CeO2 composites, and it's
mechanical properties are higher than that of monolithic HA at about 2-3 times.
In-vitro bioactivity test results showed that apatite layers on the surface of
the samples were in the different morphologies. 

References

  • [1] Youness, R.A., Taha, M.A., Ibrahim, M.A. (2017). Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J. Mol. Struct. 1150, 188-195.
  • [2] Khanal, S.P., Mahfuz, H., Rondinone, A.J., Leventouri, Th. (2016). Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon. Mater. Sci. Eng., C 60, 204-210.
  • [3] Yetmez, M., Erkmen, Z.E., Kalkandelen, C., Ficai, A., Oktar, F.N. (2017). Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Mater. Sci. Eng., C 77 , 470-475.
  • [4] Castkova, K., Hadraba, H., Matousek, A., Roupcova, P., Chlup, Z., Novotna, L., Cihlar, J. (2016). Synthesis of Ca,Y-zirconia/hydroxyapatite nanoparticles and composites. J. Eur. Ceram. Soc. 36, 2903-2912.
  • [5] Brzezińska-Miecznik, J., Haberko, K., Sitarz, M., Bućko, M.M., Macherzyńska, B., Lach, R. (2016). Natural and synthetic hydroxyapatite/zirconia composites: A comparative study. Ceram. Int. 42, 11126-11135.
  • [6] Evis, Z., Doremus, R.H. (2008). Effect of AlF3, CaF2 and MgF2 on hot-pressed hydroxyapatite-nanophase alpha-alumina composites. Mater. Res. Bull. 43, 2643-2651
  • [7] Kutbay, I., Yilmaz, B., Evis, Z., Usta, M. (2014). Effect of calcium fluoride on mechanical behavior and sinterability of nano-hydroxyapatite and titania composites. Ceram. Int. 40, 14817-14826.
  • [8] Zhou, Y., Rahaman, M.N. (1997). Effect of redox reaction on the sintering behavior of cerium oxide. Acta Mater. 45(9), 3635-3639.
  • [9] Wang, X., Deng, L.L., Wang, L.Y., Dai, S.M., Xing, Z., Zhan, X.X., Lu, X.Z., Xie, S.Y., Huang, R.B., Zheng, L.S. (2017) . Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. J. Mater. Chem. A 5, 1706-1712.
  • [10] Nakane, S., Tachi, T., Yoshinaka, M., Hirota, K., Yamaguchi, O. (1997). Characterization and sintering of reactive cerium(IV) oxide powders prepared by the hydrazine method. J. Am. Ceram. Soc. 80(12), 3221-3224.
  • [11] Yan, B., Zhang, Y., Chen, G., Shan, R., Ma, W., Liu, C. (2016). The utilization of hydroxyapatite-supported CaO-CeO2 catalyst for biodiesel production. Energ. Conver. Manage. 130, 156-164.
  • [12] Patil, S., Sandberg, A., Heckert, E., Self, W., Seal, S. (2007). Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomater. 28, 4600-4607.
  • [13] Hirst, S.M., Karakoti, A.S., Tyler, R.D., Sriranganathan, N., Seal, S., Reilly, C.M. (2009). Anti-inflammatory properties of cerium oxide nanoparticles. Small 5(24), 2848-2856.
  • [14] Gopi, D., Murugan, N., Ramya, S., Shinyjoy, E., Kavitha, L. (2015). Ball flower like manganese, strontium substituted hydroxyapatite/cerium oxide dual coatings on the AZ91 Mg alloy with improved bioactive and corrosion resistance properties for implant applications. RSC Adv. 5, 27402-27411.
  • [15] Li, K., Yu, J., Xie, Y., You, M., Huang, L., Zheng, X. (2017). The effects of cerium oxide incorporation in calcium silicate coating on bone mesenchymal stem cell and macrophage responses. Biol. Trace Elem. Res. 177, 148-158.
  • [16] Ivanchenko, L.A., Pinchuk, N.D., Parkhomei, A.R., Golovkova, M.E., Molchanovskaya, M.I., Syabro, A.N. (2009). Effect of cerium dioxide on the properties of biogenic hydroxyapatite sintered with borosilicate glass. Powder Metall. Met. Ceram. 48 (5-6), 305-310.
  • [17] Gunduz, O., Gode, C., Ahmad, Z., Gökçe, H., Yetmez, M., Kalkandelen, C., Sahin, Y.M., Oktar, F.N. (2014). Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J. Mech. Behav. Biomed. Mater. 35, 70-76.
  • [18] Pazarlioglu, S., Salman, S. (2017). Sintering effect on the microstructural, mechanical, and in vitro bioactivity properties of a commercially synthetic hydroxyapatite. J. Aust. Ceram. Soc. 53, 391-401.
  • [19] Majling, J., Znáik, A., Palová, S., Stevĭk, S., Kovalĭk, D.K., Roy, A.R. (1997). Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels. J. Mater. Res. 12(1), 198-202.
  • [20] Ozawa, M. (2004). Effect of oxygen release on the sintering of fine CeO2 powder at low temperature. Scripta Mater. 50, 61-64.
  • [48] Chen, M., Lu, C., Yu, J. (2007). Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2. J. Eur. Ceram. Soc. 27, 4633-4638.
  • [22] Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., Milthorpe, B.K. (1995). Sintering effects on the strength of hydroxyapatite. Biomater.16, 409-415.
  • [23] Fathi, M.H., Hanifi, A., Mortazavi, V. (2008). Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol. 202, 536-542.
  • [24] Wang, A.J., Lu, Y.P., Zhu, R.F., Li, S.T., Xiao, G.Y., Zhao, G.F., Xu, W.H. (2008). Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres. J. Biomed. Mater. Res. A 87A(2), 557-562.
  • [25] Dorozhkin, S.V. (2008). Green chemical synthesis of calcium phosphate bioceramics. J. Appl. Biomater. Biomech. 6(2), 104-109.
  • [26] Mateus, A.Y.P., Barrias, C.C., Ribeiro, C., Ferraz, M.P., Monteiro, F.J. (2008). Comparative study of nanohydroxyapatite microspheres for medical applications. J. Biomed. Mater. Res. A 86(2), 483-493.
  • [27] Locardi, B., Pazzaglia, V.E., Gabbi, C., Profilo, B. (1993). Thermal behaviour of hydroxyapatite intended for medical applications. Biomater. 44, 437-441.
  • [28] Muralithran, G., Ramesh, S. (2000). The effects of sintering temperature on the properties of hydroxyapatite. Ceram. Inter. 26, 221-230.
  • [29] Hull, S., Norberg, S.T., Ahmed, I., Eriksson, S.G., Marrocchelli, D., Madden, P.A. (2009). Oxygen vacancy ordering within anion-deficient ceria. J. Solid State Chem. 182, 2815-2821.
  • [30] Zinkevich, M., Djurovic, D., Aldinger, F. (2006). Thermodynamic modelling of the cerium-oxygen system. Solid State Ionics 177, 989-1001.
  • [31] Kümmerle, E.A., Heger G. (1999). The Structures of C-Ce2O3+δ, Ce7O12, and Ce11O20. J. Solid State Chem. 147, 485-500.
  • [32] Morais, D.S., Fernandes, S., Gomes, P.S., Fernandes, M.H., Sampaio, P., Ferraz, M.P., Santos, J.D., Lopes, M.A., Hussain, N.S. (2015). Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration. Biomed. Mater. 10(5), 055008.
  • [33] Gamoke, B., Neff, D., Simons, J. (2009). Nature of PO bonds in phosphates. J. Phys. Chem. A 113, 5677-5684.
  • [34] Frayssinet, P., Rouquet, N., Fages, J., Durand, M., Vidalain, P.O., Bonell, G. (1997). The influence of sintering temperature on the proliferation of fibroblastic cells in contact with HA-bioceramics. J. Biomed. Mater. Res. 35, 337-347.
  • [35] Fanovich, M.A., Castro, M.S., Lȯpez, J.M.P. (1998). Improvement of the microstructure and microhardness of hydroxyapatite ceramics by addition of lithium. Mater. Lett. 33, 269-272.
  • [36] Habibovic, P., Yuan, H., van der Valk, C.M., Meijer, G., van Blitterswijka, C.A., de Groot, K. (2005). 3D micro environment as essential element for osteoinduction by biomaterials. Biomater. 26, 3565-3575
  • [37] Chu, C., Lin, P., Xue, X., Zhu, J., Yin, Z. (2002). Fabrication and characterization of hydroxyapatite reinforced with 20 vol% Ti particles for use as hard tissue replacement. J. Mater. Sci. Mater. Med. 13, 985-992.
  • [38] Li, X.W., Yasuda, H.Y., Umakoshi, Y. (2006). Bioactive ceramic composites sintered from hydroxyapatite and silica at 1200oC: preparation, microstructures and in vitro bone-like layer growth. J. Mater. Sci. Mater. Med. 17, 573-581.
  • [39] Evis, Z. (2007). Reactions in hydroxylapatite-zirconia composites, Ceram. Inter. 33, 987-991.
  • [40] Upasani, M. (2017). Synthesis of Y3Al5O12:Tb & Y3Al5O12:Tb,Si phosphor by combustion synthesis: Comparative investigations on the structural and spectral properties. Opt. Mater. 64, 70-74
  • [41] Mikhailov, M.M., Vlasov, V.A., Yuryev, S.A., Neshchimenko, V.V., Shcherbina, V.V. (2015). Optical properties and radiation stability of TiO2 powders modified by Al2O3, ZrO2, SiO2, TiO2, ZnO, and MgO nanoparticles. Dyes and Pigments 123, 72-77.
  • [42] Tan, C.Y., Yaghoubi, A., Ramesh, S., Adzila, S., Purbolaksono, J., Hassan, M.A., Kutty, M.G. (2013). Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite. Ceram. Inter. 39, 8979-8983.
  • [43] Hoepfner, T.P., Case, E.D. (2004). An estimate of the critical grain size for microcracks induced in hydroxyapatite by thermal expansion anisotropy. Mater. Lett. 58, 489- 492.
  • [44] Case, E.D., Smith, I.O., Baumann, M.J. (2005). Microcracking and porosity in calcium phosphates and the implications for bone tissue engineering. Mater. Sci. Eng. A 390, 246-254.
  • [45] Miao, X., Chen, Y., Guo, H., Khor, K.A. (2004). Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceram. Inter. 30, 1793-1796.
  • [46] Sameshima, S., Kawaminami, M., Hirata, Y. (2002). Thermal expansion of rare-earth-doped ceria ceramics, J. Ceram. Soc. Jpn 110(7), 597-600.
  • [47] Ruseska, G., Fidancevska, E., Bosser, J. (2006). Mechanical and thermal-expansion characteristics of Ca10(PO4)6(OH)2-Ca3(PO4)2 composites. Science of Sintering 38, 245-253.
  • [49] Hassan, M.N., Mahmoud, M.M., Link, G., El-Fattah, A.A., Kandil, S. (2016). Sintering of naturally derived hydroxyapatite using high frequency microwave processing. J. Alloys Compd. 682, 107-114.
  • [50] Herliansyah, M.K., Hamdi, M., Ide-Ektessabi, A., Wildan, M.W., Toque, J.A. (2009). The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater. Sci. Eng. C 29, 1674-1680.
  • [51] Wang, P.E., Chaki, T.K. (1993). Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J. Mater. Sci. Mat. Med. 4, 150-158.
  • [52] Rootare, H.M., Craig, R.G. (1974). Characterization of the compaction and sintering of hydroxyapatite powders by mercury porosimetry, Powder Technol. 9, 199-211.
  • [57] Hoepfner, T.P., Case, E.D. (2003). The influence of the microstructure on the hardness of sintered hydroxyapatite. Ceram. Inter. 29, 699-706.
  • [54] Wang, X., Fan, H., Xiao, Y., Zhang, X. (2006) . Fabrication and characterization of porous hydroxyapatite/β-tricalcium phosphate ceramics by microwave sintering. Mater. Lett. 60, 455-458.
  • [55] Alymov, M.I., Bakunova, N.V., Barinov, S.M., Belunik, I.A., Fomin, A.S., Ievlev, V.M., Soldatenko, S.A. (2011). Specific features of the densification of hydroxyapatite nanopowders upon pressing. Nanotechnologies in Russia 6(5-6), 353-356.
  • [56] Pazarlioglu, S.S., Gokce, H., Ozyegin, L.S., Salman, S. (2014). Effect of sintering on the microstructural and mechanical properties of meleagris gallopova hydroxyapatite. Bio-Med. Mater. Eng. 24, 1751-1769.
  • [58] Wang, J., Shaw, L.L. (2009). Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomater. 30, 6565-6572.
  • [59] Ryu, H.S., Youn, H.J., Hong, K.S., Chang, B.S., Lee, C.K., Chung, S.S. (2002). An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomater. 23, 909-914.
  • [60] Mansour, S.F., El-dek, S.I., Ahmed, M.K. (2017). Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7, 43202.
  • [61] Zhu, Q., Ablikim, Z., Chen, T., Cai, Q., Xia, J., Jiang, D., Wang, S. (2017). The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones. Ceram. Inter. 43, 12213-12220.

Hydroxyapatite/cerium oxide composites: Sintering, microstructural, mechanical and invitro bioactivity properties

Year 2019, , 295 - 304, 01.11.2019
https://doi.org/10.7240/jeps.512240

Abstract

Effect of cerium
oxide (CeO2) additive on the microstructure, mechanical and invitro
bioactivity properties of a commercially synthetic hydroxyapatite (HA) was
investigated. HA without CeO2 started to decompose at 1100 oC,
but the decomposition temperature of the CeO2 added samples
decreased up to 900 oC. Decomposition rate of the sintered samples
increased as the sintering temperature reached to 1300 oC. It was
about 5.8% for monolithic HA, and increased to 11.4% when the CeO2
additive to HA reached to 2.5 wt%. SEM images showed that an excessive grain
growth as well as microcracks occured on the surface of monolithic HA when it
was sintered at the temperatures than that of 1100 oC. The
microcracks were also observed on the surface of HA-CeO2 composites,
when they were sintered at 1300 oC. The composite of HA-0.5CeO2
sintered at 1100 oC possess the higher fracture toughness (Kıc)
(2.510 ± 0.225 MPam1/2) and the higher compressive strength (152.73
± 6.31 MPa) compared to other HA-CeO2 composites, and it's
mechanical properties are higher than that of monolithic HA at about 2-3 times.
In-vitro bioactivity test results showed that apatite layers on the surface of
the samples were in the different morphologies. 

References

  • [1] Youness, R.A., Taha, M.A., Ibrahim, M.A. (2017). Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J. Mol. Struct. 1150, 188-195.
  • [2] Khanal, S.P., Mahfuz, H., Rondinone, A.J., Leventouri, Th. (2016). Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon. Mater. Sci. Eng., C 60, 204-210.
  • [3] Yetmez, M., Erkmen, Z.E., Kalkandelen, C., Ficai, A., Oktar, F.N. (2017). Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Mater. Sci. Eng., C 77 , 470-475.
  • [4] Castkova, K., Hadraba, H., Matousek, A., Roupcova, P., Chlup, Z., Novotna, L., Cihlar, J. (2016). Synthesis of Ca,Y-zirconia/hydroxyapatite nanoparticles and composites. J. Eur. Ceram. Soc. 36, 2903-2912.
  • [5] Brzezińska-Miecznik, J., Haberko, K., Sitarz, M., Bućko, M.M., Macherzyńska, B., Lach, R. (2016). Natural and synthetic hydroxyapatite/zirconia composites: A comparative study. Ceram. Int. 42, 11126-11135.
  • [6] Evis, Z., Doremus, R.H. (2008). Effect of AlF3, CaF2 and MgF2 on hot-pressed hydroxyapatite-nanophase alpha-alumina composites. Mater. Res. Bull. 43, 2643-2651
  • [7] Kutbay, I., Yilmaz, B., Evis, Z., Usta, M. (2014). Effect of calcium fluoride on mechanical behavior and sinterability of nano-hydroxyapatite and titania composites. Ceram. Int. 40, 14817-14826.
  • [8] Zhou, Y., Rahaman, M.N. (1997). Effect of redox reaction on the sintering behavior of cerium oxide. Acta Mater. 45(9), 3635-3639.
  • [9] Wang, X., Deng, L.L., Wang, L.Y., Dai, S.M., Xing, Z., Zhan, X.X., Lu, X.Z., Xie, S.Y., Huang, R.B., Zheng, L.S. (2017) . Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. J. Mater. Chem. A 5, 1706-1712.
  • [10] Nakane, S., Tachi, T., Yoshinaka, M., Hirota, K., Yamaguchi, O. (1997). Characterization and sintering of reactive cerium(IV) oxide powders prepared by the hydrazine method. J. Am. Ceram. Soc. 80(12), 3221-3224.
  • [11] Yan, B., Zhang, Y., Chen, G., Shan, R., Ma, W., Liu, C. (2016). The utilization of hydroxyapatite-supported CaO-CeO2 catalyst for biodiesel production. Energ. Conver. Manage. 130, 156-164.
  • [12] Patil, S., Sandberg, A., Heckert, E., Self, W., Seal, S. (2007). Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomater. 28, 4600-4607.
  • [13] Hirst, S.M., Karakoti, A.S., Tyler, R.D., Sriranganathan, N., Seal, S., Reilly, C.M. (2009). Anti-inflammatory properties of cerium oxide nanoparticles. Small 5(24), 2848-2856.
  • [14] Gopi, D., Murugan, N., Ramya, S., Shinyjoy, E., Kavitha, L. (2015). Ball flower like manganese, strontium substituted hydroxyapatite/cerium oxide dual coatings on the AZ91 Mg alloy with improved bioactive and corrosion resistance properties for implant applications. RSC Adv. 5, 27402-27411.
  • [15] Li, K., Yu, J., Xie, Y., You, M., Huang, L., Zheng, X. (2017). The effects of cerium oxide incorporation in calcium silicate coating on bone mesenchymal stem cell and macrophage responses. Biol. Trace Elem. Res. 177, 148-158.
  • [16] Ivanchenko, L.A., Pinchuk, N.D., Parkhomei, A.R., Golovkova, M.E., Molchanovskaya, M.I., Syabro, A.N. (2009). Effect of cerium dioxide on the properties of biogenic hydroxyapatite sintered with borosilicate glass. Powder Metall. Met. Ceram. 48 (5-6), 305-310.
  • [17] Gunduz, O., Gode, C., Ahmad, Z., Gökçe, H., Yetmez, M., Kalkandelen, C., Sahin, Y.M., Oktar, F.N. (2014). Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J. Mech. Behav. Biomed. Mater. 35, 70-76.
  • [18] Pazarlioglu, S., Salman, S. (2017). Sintering effect on the microstructural, mechanical, and in vitro bioactivity properties of a commercially synthetic hydroxyapatite. J. Aust. Ceram. Soc. 53, 391-401.
  • [19] Majling, J., Znáik, A., Palová, S., Stevĭk, S., Kovalĭk, D.K., Roy, A.R. (1997). Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels. J. Mater. Res. 12(1), 198-202.
  • [20] Ozawa, M. (2004). Effect of oxygen release on the sintering of fine CeO2 powder at low temperature. Scripta Mater. 50, 61-64.
  • [48] Chen, M., Lu, C., Yu, J. (2007). Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2. J. Eur. Ceram. Soc. 27, 4633-4638.
  • [22] Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., Milthorpe, B.K. (1995). Sintering effects on the strength of hydroxyapatite. Biomater.16, 409-415.
  • [23] Fathi, M.H., Hanifi, A., Mortazavi, V. (2008). Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol. 202, 536-542.
  • [24] Wang, A.J., Lu, Y.P., Zhu, R.F., Li, S.T., Xiao, G.Y., Zhao, G.F., Xu, W.H. (2008). Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres. J. Biomed. Mater. Res. A 87A(2), 557-562.
  • [25] Dorozhkin, S.V. (2008). Green chemical synthesis of calcium phosphate bioceramics. J. Appl. Biomater. Biomech. 6(2), 104-109.
  • [26] Mateus, A.Y.P., Barrias, C.C., Ribeiro, C., Ferraz, M.P., Monteiro, F.J. (2008). Comparative study of nanohydroxyapatite microspheres for medical applications. J. Biomed. Mater. Res. A 86(2), 483-493.
  • [27] Locardi, B., Pazzaglia, V.E., Gabbi, C., Profilo, B. (1993). Thermal behaviour of hydroxyapatite intended for medical applications. Biomater. 44, 437-441.
  • [28] Muralithran, G., Ramesh, S. (2000). The effects of sintering temperature on the properties of hydroxyapatite. Ceram. Inter. 26, 221-230.
  • [29] Hull, S., Norberg, S.T., Ahmed, I., Eriksson, S.G., Marrocchelli, D., Madden, P.A. (2009). Oxygen vacancy ordering within anion-deficient ceria. J. Solid State Chem. 182, 2815-2821.
  • [30] Zinkevich, M., Djurovic, D., Aldinger, F. (2006). Thermodynamic modelling of the cerium-oxygen system. Solid State Ionics 177, 989-1001.
  • [31] Kümmerle, E.A., Heger G. (1999). The Structures of C-Ce2O3+δ, Ce7O12, and Ce11O20. J. Solid State Chem. 147, 485-500.
  • [32] Morais, D.S., Fernandes, S., Gomes, P.S., Fernandes, M.H., Sampaio, P., Ferraz, M.P., Santos, J.D., Lopes, M.A., Hussain, N.S. (2015). Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration. Biomed. Mater. 10(5), 055008.
  • [33] Gamoke, B., Neff, D., Simons, J. (2009). Nature of PO bonds in phosphates. J. Phys. Chem. A 113, 5677-5684.
  • [34] Frayssinet, P., Rouquet, N., Fages, J., Durand, M., Vidalain, P.O., Bonell, G. (1997). The influence of sintering temperature on the proliferation of fibroblastic cells in contact with HA-bioceramics. J. Biomed. Mater. Res. 35, 337-347.
  • [35] Fanovich, M.A., Castro, M.S., Lȯpez, J.M.P. (1998). Improvement of the microstructure and microhardness of hydroxyapatite ceramics by addition of lithium. Mater. Lett. 33, 269-272.
  • [36] Habibovic, P., Yuan, H., van der Valk, C.M., Meijer, G., van Blitterswijka, C.A., de Groot, K. (2005). 3D micro environment as essential element for osteoinduction by biomaterials. Biomater. 26, 3565-3575
  • [37] Chu, C., Lin, P., Xue, X., Zhu, J., Yin, Z. (2002). Fabrication and characterization of hydroxyapatite reinforced with 20 vol% Ti particles for use as hard tissue replacement. J. Mater. Sci. Mater. Med. 13, 985-992.
  • [38] Li, X.W., Yasuda, H.Y., Umakoshi, Y. (2006). Bioactive ceramic composites sintered from hydroxyapatite and silica at 1200oC: preparation, microstructures and in vitro bone-like layer growth. J. Mater. Sci. Mater. Med. 17, 573-581.
  • [39] Evis, Z. (2007). Reactions in hydroxylapatite-zirconia composites, Ceram. Inter. 33, 987-991.
  • [40] Upasani, M. (2017). Synthesis of Y3Al5O12:Tb & Y3Al5O12:Tb,Si phosphor by combustion synthesis: Comparative investigations on the structural and spectral properties. Opt. Mater. 64, 70-74
  • [41] Mikhailov, M.M., Vlasov, V.A., Yuryev, S.A., Neshchimenko, V.V., Shcherbina, V.V. (2015). Optical properties and radiation stability of TiO2 powders modified by Al2O3, ZrO2, SiO2, TiO2, ZnO, and MgO nanoparticles. Dyes and Pigments 123, 72-77.
  • [42] Tan, C.Y., Yaghoubi, A., Ramesh, S., Adzila, S., Purbolaksono, J., Hassan, M.A., Kutty, M.G. (2013). Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite. Ceram. Inter. 39, 8979-8983.
  • [43] Hoepfner, T.P., Case, E.D. (2004). An estimate of the critical grain size for microcracks induced in hydroxyapatite by thermal expansion anisotropy. Mater. Lett. 58, 489- 492.
  • [44] Case, E.D., Smith, I.O., Baumann, M.J. (2005). Microcracking and porosity in calcium phosphates and the implications for bone tissue engineering. Mater. Sci. Eng. A 390, 246-254.
  • [45] Miao, X., Chen, Y., Guo, H., Khor, K.A. (2004). Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceram. Inter. 30, 1793-1796.
  • [46] Sameshima, S., Kawaminami, M., Hirata, Y. (2002). Thermal expansion of rare-earth-doped ceria ceramics, J. Ceram. Soc. Jpn 110(7), 597-600.
  • [47] Ruseska, G., Fidancevska, E., Bosser, J. (2006). Mechanical and thermal-expansion characteristics of Ca10(PO4)6(OH)2-Ca3(PO4)2 composites. Science of Sintering 38, 245-253.
  • [49] Hassan, M.N., Mahmoud, M.M., Link, G., El-Fattah, A.A., Kandil, S. (2016). Sintering of naturally derived hydroxyapatite using high frequency microwave processing. J. Alloys Compd. 682, 107-114.
  • [50] Herliansyah, M.K., Hamdi, M., Ide-Ektessabi, A., Wildan, M.W., Toque, J.A. (2009). The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater. Sci. Eng. C 29, 1674-1680.
  • [51] Wang, P.E., Chaki, T.K. (1993). Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J. Mater. Sci. Mat. Med. 4, 150-158.
  • [52] Rootare, H.M., Craig, R.G. (1974). Characterization of the compaction and sintering of hydroxyapatite powders by mercury porosimetry, Powder Technol. 9, 199-211.
  • [57] Hoepfner, T.P., Case, E.D. (2003). The influence of the microstructure on the hardness of sintered hydroxyapatite. Ceram. Inter. 29, 699-706.
  • [54] Wang, X., Fan, H., Xiao, Y., Zhang, X. (2006) . Fabrication and characterization of porous hydroxyapatite/β-tricalcium phosphate ceramics by microwave sintering. Mater. Lett. 60, 455-458.
  • [55] Alymov, M.I., Bakunova, N.V., Barinov, S.M., Belunik, I.A., Fomin, A.S., Ievlev, V.M., Soldatenko, S.A. (2011). Specific features of the densification of hydroxyapatite nanopowders upon pressing. Nanotechnologies in Russia 6(5-6), 353-356.
  • [56] Pazarlioglu, S.S., Gokce, H., Ozyegin, L.S., Salman, S. (2014). Effect of sintering on the microstructural and mechanical properties of meleagris gallopova hydroxyapatite. Bio-Med. Mater. Eng. 24, 1751-1769.
  • [58] Wang, J., Shaw, L.L. (2009). Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomater. 30, 6565-6572.
  • [59] Ryu, H.S., Youn, H.J., Hong, K.S., Chang, B.S., Lee, C.K., Chung, S.S. (2002). An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomater. 23, 909-914.
  • [60] Mansour, S.F., El-dek, S.I., Ahmed, M.K. (2017). Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7, 43202.
  • [61] Zhu, Q., Ablikim, Z., Chen, T., Cai, Q., Xia, J., Jiang, D., Wang, S. (2017). The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones. Ceram. Inter. 43, 12213-12220.
There are 59 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Süleyman Serdar Pazarlıoğlu 0000-0002-7870-8418

Publication Date November 1, 2019
Published in Issue Year 2019

Cite

APA Pazarlıoğlu, S. S. (2019). Hydroxyapatite/cerium oxide composites: Sintering, microstructural, mechanical and invitro bioactivity properties. International Journal of Advances in Engineering and Pure Sciences, 31(4), 295-304. https://doi.org/10.7240/jeps.512240
AMA Pazarlıoğlu SS. Hydroxyapatite/cerium oxide composites: Sintering, microstructural, mechanical and invitro bioactivity properties. JEPS. November 2019;31(4):295-304. doi:10.7240/jeps.512240
Chicago Pazarlıoğlu, Süleyman Serdar. “Hydroxyapatite/Cerium Oxide Composites: Sintering, Microstructural, Mechanical and Invitro Bioactivity Properties”. International Journal of Advances in Engineering and Pure Sciences 31, no. 4 (November 2019): 295-304. https://doi.org/10.7240/jeps.512240.
EndNote Pazarlıoğlu SS (November 1, 2019) Hydroxyapatite/cerium oxide composites: Sintering, microstructural, mechanical and invitro bioactivity properties. International Journal of Advances in Engineering and Pure Sciences 31 4 295–304.
IEEE S. S. Pazarlıoğlu, “Hydroxyapatite/cerium oxide composites: Sintering, microstructural, mechanical and invitro bioactivity properties”, JEPS, vol. 31, no. 4, pp. 295–304, 2019, doi: 10.7240/jeps.512240.
ISNAD Pazarlıoğlu, Süleyman Serdar. “Hydroxyapatite/Cerium Oxide Composites: Sintering, Microstructural, Mechanical and Invitro Bioactivity Properties”. International Journal of Advances in Engineering and Pure Sciences 31/4 (November 2019), 295-304. https://doi.org/10.7240/jeps.512240.
JAMA Pazarlıoğlu SS. Hydroxyapatite/cerium oxide composites: Sintering, microstructural, mechanical and invitro bioactivity properties. JEPS. 2019;31:295–304.
MLA Pazarlıoğlu, Süleyman Serdar. “Hydroxyapatite/Cerium Oxide Composites: Sintering, Microstructural, Mechanical and Invitro Bioactivity Properties”. International Journal of Advances in Engineering and Pure Sciences, vol. 31, no. 4, 2019, pp. 295-04, doi:10.7240/jeps.512240.
Vancouver Pazarlıoğlu SS. Hydroxyapatite/cerium oxide composites: Sintering, microstructural, mechanical and invitro bioactivity properties. JEPS. 2019;31(4):295-304.