Research Article
BibTex RIS Cite

Effects of Mandelic and Propane-1,2,3-Tricarboxylic Acids on Calcium Oxalate Monohydrate Crystallization

Year 2020, , 33 - 41, 31.03.2020
https://doi.org/10.7240/jeps.578285

Abstract

The effects of mandelic and propane-1,2,3-tricarboxylic acids as additives on calcium oxalate monohydrate (COM) crystals were investigated in this study. The physicochemical properties of the COM crystals prepared with and without these additives were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and zeta potential analysis. The XRD and SEM results showed that the crystals prepared in pure medium were monohydrates and consisted primarily of hexagonal crystals, respectively. The additives mandelic acid and propane-1,2,3-tricarboxylic acid in the crystallization media significantly changed the size and morphology of the COM crystals, the effects of which were more pronounced with higher concentrations of the additives. The results of FTIR suggested that both carboxylic acids were adsorbed onto the surface of the COM crystals. The zeta potential analysis showed a negative charge on the surface of the COM crystals in the mandelic acid medium, while the surface became more positive in the medium containing increasing concentrations of propane-1,2,3-tricarboxylic acid. In addition, an analysis was conducted to evaluate the thermal characteristics of the COM crystals prepared with and without the additives. The data obtained were used to calculate the kinetic parameters, such as the activation energy and pre-exponential factor, using the Coats-Redfern method. The calculated activation energies for stages I, II, and III in pure medium were 98.76, 270.69, 258.55 kJ/mol, respectively, which were lower than that of COM crystals prepared in the two media containing the additives.

Supporting Institution

Marmara University

Project Number

FEN-A-110718-0396

Thanks

This work was supported by the Marmara University Scientific Research Projects Commission under the funding FEN-A-110718-0396.

References

  • [1] Li, S., Tang, W., Li, M., Wang, L., Yang, Y., Gong, J. (2019). Understanding the Role of Citric Acid on the Crystallization Pathways of Calcium Oxalate Hydrates. Cryst. Growth Des., 19(6), 3139-3147.[2] King, H.E., Mattner, D.C., Plümper, O., Geisler, T., Putnis, A. (2014). Forming Cohesive Calcium Oxalate Layers on Marble Surfaces for Stone Conservation. Cryst. Growth Des.,14(8), 3910-3917.[3] Akyol, E., Öner, M. (2014). Controlling of morphology and polymorph of calcium oxalate crystals by using polyelectrolytes. J. Cryst. Growth., 401(1), 260-265.[4] Akın, B., Öner, M., Bayram, Y., Demadis, K.D. (2008). Effects of Carboxylate-Modified, “Green” Inulin Biopolymers on the Crystal Growth of Calcium Oxalate. Cryst. Growth Des.,8(6), 1997-2005.[5] Ruiz-Agudo, E., Burgos-Cara, A., Ruiz-Agudo, C., Ibañez-Velasco, A., Cölfen, H., Rodriguez-Navarro, C. (2017). A non-classical view on calcium oxalate precipitation and the role of citrate. Nat Commun., 8, 768.[6] Ouyang, J.M., Duan, L., Tieke, B. (2003). Effects of Carboxylic Acids on the Crystal Growth of Calcium Oxalate Nanoparticles in Lecithin-Water Liposome Systems. Langmuir., 19(21), 8980-8985.[7] Manne, J.S., Biala, N., Smith, A.D., Gryte, C.C. (1990). The effect of anionic polyelectrolytes on the crystallization of calcium oxalate hydrates. J. Cryst. Growth., 100(3), 627-634.[8] Doherty, W.O.S., Fellows, C.M., Gorjian, S., Senogles, E., Cheung, W.H. (2004). Inhibition of Calcium Oxalate Monohydrate by Poly(acrylic acid)s with Different End Groups, J. Appl. Polym. Sci., 91, 2035–2041.[9] Grases, F., Genestar, C., Millán, A. (1989). The influence of some metallic ions and their complexes on the kinetics of crystal growth of calcium oxalate, J. Cryst. Growth., 94(2), 507-512.[10] Izatulina, A.R., Gurzhiy, V.V., Krzhizhanovskaya, M.G., Kuz’mina, M.A., Leoni, M., Frank-Kamenetskaya, O.V. (2018). Hydrated Calcium Oxalates: Crystal Structures, Thermal Stability, and Phase Evolution. Cryst. Growth Des., 18, 5465−5478.[11] Zhang, Y., Tao, J., Feng, N., Han, X. (2008) Crystal growth of calcium oxalate induced by the extracts of Semen Plantaginis and Folium Pyrrosiae. Cryst. Res. Technol., 43, 931-934.[12] Ihli, J., Wang, Y.W., Cantaert, B., Kim, Y.Y., Green, D.C., Bomans, P.H.H., Sommerdijk, N.A.J.M., Meldrum, F.C. (2015). Precipitation of Amorphous Calcium Oxalate in Aqueous Solution. Chem. Mater., 27, 3999−4007.[13] Duan, C.Y., Xia, Z.Y., Zhang, G.N., Gui, B.S., Xue, J.F., Ouyang, J.M. (2013). Changes in urinary nanocrystallites in calcium oxalate stone formers before and after potassium citrate intake. Int J Nanomedicine., 8, 909–918.[14] Frost, R.L., Weier, M.L. (2004). Thermal treatment of whewellite—a thermal analysis and Raman spectroscopic study. Thermochim. Acta., 409, 79-85. [15] Coats, A.W., Redfern, J.P. (1964). Kinetic parameters from thermogravimetric data. Nature., 201, 68–69. [16] Naqvi, S.R., Tariq, R., Hameed, Z., Ali, I., Naqvi, M., Chen, W.H., Ceylan, S., Rashid, H., Ahmad, J., Taqvi, S.A., Shahbaz, M. (2019). Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method. Renew Energy., 131, 854-860.[17] Vlaev, L., Nedelchev, N., Gyurova, K., Zagorcheva, M. (2008). A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J. Anal. Appl. Pyrolysis., 81, 253–262.

Mandelik Asit ve Propan-1,2,3-Trikarboksilik Asitin Kalsiyum Oksalat Monohidrat Kristalizasyonuna Etkisi

Year 2020, , 33 - 41, 31.03.2020
https://doi.org/10.7240/jeps.578285

Abstract

Bu
çalışmanın amacı katkı maddesi olarak kullanılan mandelik ve propan-1,2,3-trikarboksilik
asitin, kalsiyum oksalat monohidrat (COM) kristalleri üzerindeki etkileri
incelenmiştir. Saf ve katkı ortamında üretilen COM kristallerinin özellikleri,
X-Işını Kırınımı (XRD) metodu, taramalı elektron mikroskobu (SEM), Fourier
dönüşümlü kızılötesi spektroskopisi (FTIR) ve zeta potansiyeli analizi
kullanılarak karakterize edilmiştir. XRD ve SEM sonuçları saf ortamda üretilen
kristallerin monohidrat formunda ve genel olarak hegzaganol yapıda olduğunu
göstermiştir. Kristalizasyon ortamında mandelik ve propan-1,2,3-trikarboksilik
asitin varlığı, COM kristallerinin hem morfolojisinin hem de tane boyutunun
önemli ölçüde değişmesine neden olmuştur. Bu etki, yüksek katkı konsantrasyonlarında
daha belirgin hale gelmiştir. FTIR sonuçları, çalışmada kullanılan her iki
karboksilik asitin de COM kristallerinin yüzeyine adsorplandığını göstermiştir.
Zeta potansiyeli analiz sonuçları, mandelik asit ortamında kristallerin yüzey
yükünün negatif olduğunu, bu değerin propan-1,2,3-trikarboksilik asit
varlığında ise katkı konsantrasyonunun artmasıyla birlikte daha pozitif hale
geldiğini göstermiştir. Ayrıca, saf ve katkı maddeleri varlığında üretilen COM
kristallerinin termal özelliklerini değerlendirmek için analiz yapılmıştır.
Elde edilen veriler kullanılarak aktivasyon enerjisi ve frekans faktörü Coats-Redern
modeli kullanılarak hesaplanmıştır. Saf ortamda üretilen kristallerin I, II ve
III. bozunma bölgeleri için hesaplanan aktivasyon enerjileri katkı maddesi
ortamında üretilen kristallerin aktivasyon enerjilerinden düşük olup sırasıyla
98,76, 270,69, 258,55 kJ/mol olarak belirlenmiştir.

Project Number

FEN-A-110718-0396

References

  • [1] Li, S., Tang, W., Li, M., Wang, L., Yang, Y., Gong, J. (2019). Understanding the Role of Citric Acid on the Crystallization Pathways of Calcium Oxalate Hydrates. Cryst. Growth Des., 19(6), 3139-3147.[2] King, H.E., Mattner, D.C., Plümper, O., Geisler, T., Putnis, A. (2014). Forming Cohesive Calcium Oxalate Layers on Marble Surfaces for Stone Conservation. Cryst. Growth Des.,14(8), 3910-3917.[3] Akyol, E., Öner, M. (2014). Controlling of morphology and polymorph of calcium oxalate crystals by using polyelectrolytes. J. Cryst. Growth., 401(1), 260-265.[4] Akın, B., Öner, M., Bayram, Y., Demadis, K.D. (2008). Effects of Carboxylate-Modified, “Green” Inulin Biopolymers on the Crystal Growth of Calcium Oxalate. Cryst. Growth Des.,8(6), 1997-2005.[5] Ruiz-Agudo, E., Burgos-Cara, A., Ruiz-Agudo, C., Ibañez-Velasco, A., Cölfen, H., Rodriguez-Navarro, C. (2017). A non-classical view on calcium oxalate precipitation and the role of citrate. Nat Commun., 8, 768.[6] Ouyang, J.M., Duan, L., Tieke, B. (2003). Effects of Carboxylic Acids on the Crystal Growth of Calcium Oxalate Nanoparticles in Lecithin-Water Liposome Systems. Langmuir., 19(21), 8980-8985.[7] Manne, J.S., Biala, N., Smith, A.D., Gryte, C.C. (1990). The effect of anionic polyelectrolytes on the crystallization of calcium oxalate hydrates. J. Cryst. Growth., 100(3), 627-634.[8] Doherty, W.O.S., Fellows, C.M., Gorjian, S., Senogles, E., Cheung, W.H. (2004). Inhibition of Calcium Oxalate Monohydrate by Poly(acrylic acid)s with Different End Groups, J. Appl. Polym. Sci., 91, 2035–2041.[9] Grases, F., Genestar, C., Millán, A. (1989). The influence of some metallic ions and their complexes on the kinetics of crystal growth of calcium oxalate, J. Cryst. Growth., 94(2), 507-512.[10] Izatulina, A.R., Gurzhiy, V.V., Krzhizhanovskaya, M.G., Kuz’mina, M.A., Leoni, M., Frank-Kamenetskaya, O.V. (2018). Hydrated Calcium Oxalates: Crystal Structures, Thermal Stability, and Phase Evolution. Cryst. Growth Des., 18, 5465−5478.[11] Zhang, Y., Tao, J., Feng, N., Han, X. (2008) Crystal growth of calcium oxalate induced by the extracts of Semen Plantaginis and Folium Pyrrosiae. Cryst. Res. Technol., 43, 931-934.[12] Ihli, J., Wang, Y.W., Cantaert, B., Kim, Y.Y., Green, D.C., Bomans, P.H.H., Sommerdijk, N.A.J.M., Meldrum, F.C. (2015). Precipitation of Amorphous Calcium Oxalate in Aqueous Solution. Chem. Mater., 27, 3999−4007.[13] Duan, C.Y., Xia, Z.Y., Zhang, G.N., Gui, B.S., Xue, J.F., Ouyang, J.M. (2013). Changes in urinary nanocrystallites in calcium oxalate stone formers before and after potassium citrate intake. Int J Nanomedicine., 8, 909–918.[14] Frost, R.L., Weier, M.L. (2004). Thermal treatment of whewellite—a thermal analysis and Raman spectroscopic study. Thermochim. Acta., 409, 79-85. [15] Coats, A.W., Redfern, J.P. (1964). Kinetic parameters from thermogravimetric data. Nature., 201, 68–69. [16] Naqvi, S.R., Tariq, R., Hameed, Z., Ali, I., Naqvi, M., Chen, W.H., Ceylan, S., Rashid, H., Ahmad, J., Taqvi, S.A., Shahbaz, M. (2019). Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method. Renew Energy., 131, 854-860.[17] Vlaev, L., Nedelchev, N., Gyurova, K., Zagorcheva, M. (2008). A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J. Anal. Appl. Pyrolysis., 81, 253–262.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Sevgi Polat 0000-0002-0934-2125

Perviz Sayan 0000-0003-4407-6464

Project Number FEN-A-110718-0396
Publication Date March 31, 2020
Published in Issue Year 2020

Cite

APA Polat, S., & Sayan, P. (2020). Effects of Mandelic and Propane-1,2,3-Tricarboxylic Acids on Calcium Oxalate Monohydrate Crystallization. International Journal of Advances in Engineering and Pure Sciences, 32(1), 33-41. https://doi.org/10.7240/jeps.578285
AMA Polat S, Sayan P. Effects of Mandelic and Propane-1,2,3-Tricarboxylic Acids on Calcium Oxalate Monohydrate Crystallization. JEPS. March 2020;32(1):33-41. doi:10.7240/jeps.578285
Chicago Polat, Sevgi, and Perviz Sayan. “Effects of Mandelic and Propane-1,2,3-Tricarboxylic Acids on Calcium Oxalate Monohydrate Crystallization”. International Journal of Advances in Engineering and Pure Sciences 32, no. 1 (March 2020): 33-41. https://doi.org/10.7240/jeps.578285.
EndNote Polat S, Sayan P (March 1, 2020) Effects of Mandelic and Propane-1,2,3-Tricarboxylic Acids on Calcium Oxalate Monohydrate Crystallization. International Journal of Advances in Engineering and Pure Sciences 32 1 33–41.
IEEE S. Polat and P. Sayan, “Effects of Mandelic and Propane-1,2,3-Tricarboxylic Acids on Calcium Oxalate Monohydrate Crystallization”, JEPS, vol. 32, no. 1, pp. 33–41, 2020, doi: 10.7240/jeps.578285.
ISNAD Polat, Sevgi - Sayan, Perviz. “Effects of Mandelic and Propane-1,2,3-Tricarboxylic Acids on Calcium Oxalate Monohydrate Crystallization”. International Journal of Advances in Engineering and Pure Sciences 32/1 (March 2020), 33-41. https://doi.org/10.7240/jeps.578285.
JAMA Polat S, Sayan P. Effects of Mandelic and Propane-1,2,3-Tricarboxylic Acids on Calcium Oxalate Monohydrate Crystallization. JEPS. 2020;32:33–41.
MLA Polat, Sevgi and Perviz Sayan. “Effects of Mandelic and Propane-1,2,3-Tricarboxylic Acids on Calcium Oxalate Monohydrate Crystallization”. International Journal of Advances in Engineering and Pure Sciences, vol. 32, no. 1, 2020, pp. 33-41, doi:10.7240/jeps.578285.
Vancouver Polat S, Sayan P. Effects of Mandelic and Propane-1,2,3-Tricarboxylic Acids on Calcium Oxalate Monohydrate Crystallization. JEPS. 2020;32(1):33-41.