Research Article
BibTex RIS Cite

Numerical Investigation of Hydrodynamic and Thermal Boundary Layer Flows over a Flat Plate and Transition Control

Year 2020, , 390 - 397, 01.11.2020
https://doi.org/10.7240/jeps.636786

Abstract

In
this study, Computational Fluid Dynamics (CFD) calculations are performed with
ANSYS-Fluent for an external flow over a flat plate under constant surface
temperature conditions. By using an Active Flow Control (AFC) method, the flat-plate
is heated to manipulate the transition region. Calculations are performed for a
steady and turbulent flow at 15 m/s free-stream velocity. Local skin friction
coefficient and local heat transfer coefficient distributions along the
flat-plate are investigated for laminar and turbulent boundary layers at various
constant surface temperatures. For laminar and turbulent flow boundary layer
characteristics, theoretical correlations in the literature are used to verify
the numerical results. Results show that theoretical correlations are highly consistent
with CFD results only in the laminar and turbulent regions and it is also shown
that transition can only be predicted by CFD simulations.  On the other hand, heating as an AFC method is
found to be useful in delaying transition regime over a flat plate. 

References

  • Akansu Y.E., Ozmert M. and Firat E., (2011). The Effect of Attact Angle to Vortex Shedding Phemenon of Flow Around a Square Prism With a Flow Control Rod, J. of Thermal Science and Technology, 31, 1, 109-120.
  • Jahanmari M., (2010). Active Flow Control: A Review, Division of Fluid Dynamics, Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden.
  • Lachman G., (1961). Boundary layer and flow control, Vols. 1, 2. Oxford: Pergamon Press.
  • Gad el Hak M., (200). Flow Control: Active, Passive and Reactive Flow Management, Cambridge University Press.
  • Liepmann, H. W., Nosenchuck, D. M., (1982). Active Control of Laminar-Turbulent Transition, Journal of Fluid Mechanics, Vol. 118, pp. 201–204.
  • Dovgal A.V., Levchenko V.Y.A. and Timofeev V.A., (1989). Boundary Layer Control by a Local Heating of the Wall, IUTAM Symposium on Laminar-Turbulent Transition, Toulouse, France.
  • Canbolat G., Yildizeli A., Kose H.A., Cadirci S., (2018). Numerical Investigation of Transitional Flow over a Flat Plate under Constant Heat Fluxes, 6th International Symposium on Innovative Technologies in Engineering and Science 09-11 November 2018 (ISITES2018 Alanya – Antalya - Turkey).
  • Subası A., Gunes H., (2015). Effect of wall heating on boundary layer transition over a flat plate, J. of Thermal Science and Technology.
  • Incropera, F. P., & DeWitt, D. P., (2013). Fundamentals of heat and mass transfer. New York: J. Wiley, 2002.
  • Turbulence Modelling, Introduction to ANSYS Fluent Tutorials.
  • F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Volker., (2004). A Correlation-Based Transition Model Using Local Variables: Part I — Model Formulation, ASME-GT2004-53452.

Düz Bir Plaka Üzerindeki Hidrodinamik ve Isıl Sınır Tabaka Akışının Sayısal Olarak İncelenmesi ve Geçiş Kontrolü

Year 2020, , 390 - 397, 01.11.2020
https://doi.org/10.7240/jeps.636786

Abstract

Bu çalışmada, düz bir plaka üzerindeki bir dış akış için
sabit yüzey sıcaklığı koşulları altında ANSYS-Fluent yazılımı kullanılarak
Hesaplamalı Akışkanlar Dinamiği (HAD) hesaplamaları yapılmıştır. Bir Aktif Akış
Kontrolü yöntemi olarak ısıtma, düz plaka geçiş bölgesini manipüle etmek için
kullanılmıştır. Hesaplamalar, 15 m/s serbest akım hızında daimi ve türbülanslı
bir akış için yapılmıştır. Düz plaka boyunca yerel sürtünme katsayısı ve yerel
ısı transfer katsayısı dağılımları çeşitli sabit yüzey sıcaklıklarında, laminer
ve türbülanslı sınır tabakaları için incelenmiştir. Laminer ve türbülanslı akış
sınır tabakası karakteristiklerinin doğrulanması için literatürdeki teorik
korelasyonlar kullanılmıştır. Sonuçlar, teorik korelasyonların sadece laminer
ve türbülanslı bölgelerdeki HAD sonuçları ile oldukça tutarlı olduğunu ve
ayrıca geçişin sadece HAD simülasyonları ile tahmin edilebileceğini
göstermiştir. Öte yandan, bir Aktif Akış Kontrolü yöntemi olarak ısıtmanın, düz
bir plaka üzerindeki geçiş rejimini geciktirmede faydalı olduğu bulunmuştur.



 

References

  • Akansu Y.E., Ozmert M. and Firat E., (2011). The Effect of Attact Angle to Vortex Shedding Phemenon of Flow Around a Square Prism With a Flow Control Rod, J. of Thermal Science and Technology, 31, 1, 109-120.
  • Jahanmari M., (2010). Active Flow Control: A Review, Division of Fluid Dynamics, Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden.
  • Lachman G., (1961). Boundary layer and flow control, Vols. 1, 2. Oxford: Pergamon Press.
  • Gad el Hak M., (200). Flow Control: Active, Passive and Reactive Flow Management, Cambridge University Press.
  • Liepmann, H. W., Nosenchuck, D. M., (1982). Active Control of Laminar-Turbulent Transition, Journal of Fluid Mechanics, Vol. 118, pp. 201–204.
  • Dovgal A.V., Levchenko V.Y.A. and Timofeev V.A., (1989). Boundary Layer Control by a Local Heating of the Wall, IUTAM Symposium on Laminar-Turbulent Transition, Toulouse, France.
  • Canbolat G., Yildizeli A., Kose H.A., Cadirci S., (2018). Numerical Investigation of Transitional Flow over a Flat Plate under Constant Heat Fluxes, 6th International Symposium on Innovative Technologies in Engineering and Science 09-11 November 2018 (ISITES2018 Alanya – Antalya - Turkey).
  • Subası A., Gunes H., (2015). Effect of wall heating on boundary layer transition over a flat plate, J. of Thermal Science and Technology.
  • Incropera, F. P., & DeWitt, D. P., (2013). Fundamentals of heat and mass transfer. New York: J. Wiley, 2002.
  • Turbulence Modelling, Introduction to ANSYS Fluent Tutorials.
  • F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Volker., (2004). A Correlation-Based Transition Model Using Local Variables: Part I — Model Formulation, ASME-GT2004-53452.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Gökhan Canbolat 0000-0001-6491-095X

Alperen Yıldızeli This is me 0000-0002-1097-1359

Haluk Anıl Köse This is me 0000-0001-9621-5839

Sertaç Çadırcı 0000-0002-2281-721X

Publication Date November 1, 2020
Published in Issue Year 2020

Cite

APA Canbolat, G., Yıldızeli, A., Köse, H. A., Çadırcı, S. (2020). Numerical Investigation of Hydrodynamic and Thermal Boundary Layer Flows over a Flat Plate and Transition Control. International Journal of Advances in Engineering and Pure Sciences, 32(4), 390-397. https://doi.org/10.7240/jeps.636786
AMA Canbolat G, Yıldızeli A, Köse HA, Çadırcı S. Numerical Investigation of Hydrodynamic and Thermal Boundary Layer Flows over a Flat Plate and Transition Control. JEPS. November 2020;32(4):390-397. doi:10.7240/jeps.636786
Chicago Canbolat, Gökhan, Alperen Yıldızeli, Haluk Anıl Köse, and Sertaç Çadırcı. “Numerical Investigation of Hydrodynamic and Thermal Boundary Layer Flows over a Flat Plate and Transition Control”. International Journal of Advances in Engineering and Pure Sciences 32, no. 4 (November 2020): 390-97. https://doi.org/10.7240/jeps.636786.
EndNote Canbolat G, Yıldızeli A, Köse HA, Çadırcı S (November 1, 2020) Numerical Investigation of Hydrodynamic and Thermal Boundary Layer Flows over a Flat Plate and Transition Control. International Journal of Advances in Engineering and Pure Sciences 32 4 390–397.
IEEE G. Canbolat, A. Yıldızeli, H. A. Köse, and S. Çadırcı, “Numerical Investigation of Hydrodynamic and Thermal Boundary Layer Flows over a Flat Plate and Transition Control”, JEPS, vol. 32, no. 4, pp. 390–397, 2020, doi: 10.7240/jeps.636786.
ISNAD Canbolat, Gökhan et al. “Numerical Investigation of Hydrodynamic and Thermal Boundary Layer Flows over a Flat Plate and Transition Control”. International Journal of Advances in Engineering and Pure Sciences 32/4 (November 2020), 390-397. https://doi.org/10.7240/jeps.636786.
JAMA Canbolat G, Yıldızeli A, Köse HA, Çadırcı S. Numerical Investigation of Hydrodynamic and Thermal Boundary Layer Flows over a Flat Plate and Transition Control. JEPS. 2020;32:390–397.
MLA Canbolat, Gökhan et al. “Numerical Investigation of Hydrodynamic and Thermal Boundary Layer Flows over a Flat Plate and Transition Control”. International Journal of Advances in Engineering and Pure Sciences, vol. 32, no. 4, 2020, pp. 390-7, doi:10.7240/jeps.636786.
Vancouver Canbolat G, Yıldızeli A, Köse HA, Çadırcı S. Numerical Investigation of Hydrodynamic and Thermal Boundary Layer Flows over a Flat Plate and Transition Control. JEPS. 2020;32(4):390-7.