Research Article
BibTex RIS Cite

Evaluation of High Concentrations of Sugar Beet Molasses as Substrate for Hydrogen and 5-Aminolevulinic Acid Productions

Year 2020, , 398 - 404, 01.11.2020
https://doi.org/10.7240/jeps.647523

Abstract

Sugar beet molasses is a valuable raw material and it contains high
amount of sugar especially sucrose. Therefore, it could be used as substrate
for the generation of highly valuable chemicals by microorganisms. Here,
considerably high concentrations of molasses were tested for the first time to
investigate if they could enhance the growth of Rhodobacter sphaeroides O.U.001
and generations of hydrogen and 5-aminolevulinic acid (5-ALA). Firstly, five
distinct growth cultures having sugar contents of 34
g/L, 41 g/L, 48 g/L, 55 g/L and 61 g/L were made ready using molasses. Then,
in batch processes, bacterial growth and generations of hydrogen and 5-ALA were
investigated in these media. As a result, the highest cell growth (OD660:
9.26, 4.54 g cdw/L) to date was achieved in 34
g/L sugar containing medium. Similarly, the highest quantity of 5-ALA
(37.44 mM) to date was attained in the same growth culture. In addition to
these significant improvements, at maximum 21.02 mL (0.42 L H2/L) of
hydrogen was collected from 34
g/L sugar containing medium.
To conclude, using a sugar concentration of 34 g/L yielded the highest
bacterial growth and 5-ALA generation so far. And, it also supported the
generation of considerable amount of hydrogen.          

Supporting Institution

Selçuk Üniversitesi

Project Number

BAP-11401112

Thanks

The study was supported by Selçuk University with the project number BAP-11401112.

References

  • Menon, V. and Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energ. Combust., 38, 522-550.
  • Genç, N. (2011). Evaluation of biohydrogen production potential of wastes. Pamukkale University Journal of Engineering Sciences, 17(2), 63-77.
  • Argun, H., Gökfiliz, P. and Karapinar, I. (2017). Biohydrogen production potential of different biomass sources. In A. Singh and D. Rathore (Eds.), Biohydrogen production: Sustainability of current technology and future perspective (pp. 11-48). New Delhi: Springer.
  • Şentürk, İ. G. and Büyükgüngör, H. (2010). An examination of used different waste materials and biohydrogen production methods. Sigma, 28, 369-395.
  • Wettstein, S. G., Alonso, D. M., Gürbüz, E. I. and Dumesic, J. A. (2012). A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr. Opin. Chem. Eng., 1, 218-224.
  • Ahmad, F. B., Zhang, Z., Doherty, W. O. S. and O'Hara, I. M. (2019). The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery. Renew. Sust. Energ. Rev., 109, 386–411.
  • Westermann, P., Jorgensen, B., Lange, L., Ahring, B. K. and Christensen, C. H. (2007). Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery. Int. J. Hydrogen Energy, 32, 4135-4141.
  • Ni, M., Leung, D. Y. C., Leung, M. K. H. and Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Process. Technol., 87, 461-472.
  • Kars, G., Gündüz, U., Rakhely, G., Yücel, M., Eroğlu, İ. and Kovacs, K. L. (2008). Improved hydrogen production by hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int. J. Hydrogen Energy, 33(12), 3056-3060
  • Heo, J. B., Lee, Y. S. and Chung, C. H. (in press). Raw plant-based biorefinery: A new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF. Biotechnol. Adv. doi: 10.1016/j.biotechadv.2019.107422.
  • Kars, G. and Ceylan, A. (2013). Biohydrogen and 5-aminolevulinic acid production from waste barley by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int. J. Hydrogen Energy, 38, 5573-5579.
  • Kang, M. S., Kim, D. M., Kim, J. S. and Jeong, J. H. (2005). Synthesis of 5-aminolevulinic acid (ALA) and its t-butyl ester for the fluorescence detection of early cancer. Arch. Pharm. Res., 28(10), 1111-1113.
  • Sasaki, K., Watanabe, M., Tanaka, T. and Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol., 58, 23-29.
  • Kars, G. and Alparslan, Ü. (2013). Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int. J. Hydrogen Energy, 38, 14488-14494.
  • Taşkın, M. and Alkan, M. (2019). Sector report-2018, Report, Turkey Sugar Factories Inc., Ankara, Turkey.
  • Biebl, H. and Pfennig, N. (1981). Isolation of member of the family Rhodosprillaceae. In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows and H. G. Schlegel (Eds.), The prokaryotes (pp. 267-273). New York: Springer.
  • Sasaki, K., Tanaka, T., Nishizawa, Y. and Hayashi, M. (1990). Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent waste from an anaerobic digestor. Appl. Microbiol. Biot., 32: 727-731.
  • Kars, G. and Gündüz, U. (2010). Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. Int. J. Hydrogen Energy, 35, 6646-6656.
  • Akköse, S., Gündüz, U., Yücel, M. and Eroğlu, İ. (2009). Effects of ammonium ion, acetate, and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides O.U.001. Int. J. Hydrogen Energy, 34, 8818-8827.
  • Uyar, B., Eroğlu, İ., Yücel, M., Gündüz, U. and Türker, L. (2007). Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int. J. Hydrogen Energy, 32(18), 4670-4677.
  • Mauzerall, D. and Granick, S. (1956). The occurrence and determination of d-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem., 219, 435-446.
  • Waligorska, M., Seifert, K., Szymanska, K. and Łaniecki, M. (2006). Optimization of activation conditions of Rhodobacter sphaeroides in hydrogen generation process. J. Appl. Microbiol., 101, 775-784.
  • Kars, G. and Emsen, A. (2019). Hydrogen generation by Rhodobacter sphaeroides O.U.001 using pretreated waste barley. Cumhuriyet Sci. J., 40(2), 414-423.
  • Kamiyama, H., Hotta, Y., Tanaka, T., Nishikawa, S. and Sasaki, K. (2000). Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacterium. Seibutsu Kogaku Kaishi, 78, 48-55.
  • Sasaki, K., Tanaka, T., Nishizawa, Y. and Nagai, S. (1993). Effect of pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acid. Biotechnol. Lett., 15(8), 859-864.

Yüksek Miktarlarda Şeker Pancarı Melasının Hidrojen ve 5-Aminolevulinik Asit Üretimi için Substrat Olarak Değerlendirilmesi

Year 2020, , 398 - 404, 01.11.2020
https://doi.org/10.7240/jeps.647523

Abstract

Şeker pancarı melası
değerli bir hammaddedir ve sükroz başta olmak üzere yüksek miktarda şeker
içerir. Bu nedenle, mikroorganizmalar tarafından son derece değerli
kimyasalların üretimi için substrat olarak kullanılabilir. Bu çalışmada, Rhodobacter sphaeroides O.U.001'in çoğalması
ile hidrojen ve 5-aminolevulinik asit (5-ALA) üretimlerini arttırıp
arttırmadıklarını araştırmak için ilk kez oldukça yüksek melas konsantrasyonları
test edilmiştir. İlk önce, şeker içeriği 34 g/L, 41 g/L, 48 g/L, 55 g/L ve 61
g/L olan beş farklı ortam, melas kullanılarak hazırlandı. Daha sonra, kesikli
süreçlerle, bu ortamlarda bakteri çoğalması ile hidrojen ve 5-ALA üretimleri
incelenmiştir. Sonuç olarak, bugüne kadarki en yüksek hücre çoğalması (OD660:
9.26, 4.54 g cdw/L), 34 g/L şeker içeren ortamda elde edildi. Benzer şekilde, aynı
çoğalma kültüründe bugüne kadarki en yüksek miktarda 5-ALA (37.44 mM) elde
edildi. Bu önemli gelişmelere ek olarak, 34 g/L şeker içeren ortamdan maksimum
21.02 mL (0.42 L H2/L) hidrojen toplanmıştır. Sonuç olarak, 34 g/L'lik
bir şeker konsantrasyonunun kullanılması, şimdiye kadarki en yüksek bakteri
üremesini ve 5-ALA oluşumunu sağladı. Ayrıca, önemli miktarda hidrojen üretimini
de destekledi. 

Project Number

BAP-11401112

References

  • Menon, V. and Rao, M. (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energ. Combust., 38, 522-550.
  • Genç, N. (2011). Evaluation of biohydrogen production potential of wastes. Pamukkale University Journal of Engineering Sciences, 17(2), 63-77.
  • Argun, H., Gökfiliz, P. and Karapinar, I. (2017). Biohydrogen production potential of different biomass sources. In A. Singh and D. Rathore (Eds.), Biohydrogen production: Sustainability of current technology and future perspective (pp. 11-48). New Delhi: Springer.
  • Şentürk, İ. G. and Büyükgüngör, H. (2010). An examination of used different waste materials and biohydrogen production methods. Sigma, 28, 369-395.
  • Wettstein, S. G., Alonso, D. M., Gürbüz, E. I. and Dumesic, J. A. (2012). A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr. Opin. Chem. Eng., 1, 218-224.
  • Ahmad, F. B., Zhang, Z., Doherty, W. O. S. and O'Hara, I. M. (2019). The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery. Renew. Sust. Energ. Rev., 109, 386–411.
  • Westermann, P., Jorgensen, B., Lange, L., Ahring, B. K. and Christensen, C. H. (2007). Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery. Int. J. Hydrogen Energy, 32, 4135-4141.
  • Ni, M., Leung, D. Y. C., Leung, M. K. H. and Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Process. Technol., 87, 461-472.
  • Kars, G., Gündüz, U., Rakhely, G., Yücel, M., Eroğlu, İ. and Kovacs, K. L. (2008). Improved hydrogen production by hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int. J. Hydrogen Energy, 33(12), 3056-3060
  • Heo, J. B., Lee, Y. S. and Chung, C. H. (in press). Raw plant-based biorefinery: A new paradigm shift towards biotechnological approach to sustainable manufacturing of HMF. Biotechnol. Adv. doi: 10.1016/j.biotechadv.2019.107422.
  • Kars, G. and Ceylan, A. (2013). Biohydrogen and 5-aminolevulinic acid production from waste barley by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int. J. Hydrogen Energy, 38, 5573-5579.
  • Kang, M. S., Kim, D. M., Kim, J. S. and Jeong, J. H. (2005). Synthesis of 5-aminolevulinic acid (ALA) and its t-butyl ester for the fluorescence detection of early cancer. Arch. Pharm. Res., 28(10), 1111-1113.
  • Sasaki, K., Watanabe, M., Tanaka, T. and Tanaka, T. (2002). Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol., 58, 23-29.
  • Kars, G. and Alparslan, Ü. (2013). Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int. J. Hydrogen Energy, 38, 14488-14494.
  • Taşkın, M. and Alkan, M. (2019). Sector report-2018, Report, Turkey Sugar Factories Inc., Ankara, Turkey.
  • Biebl, H. and Pfennig, N. (1981). Isolation of member of the family Rhodosprillaceae. In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows and H. G. Schlegel (Eds.), The prokaryotes (pp. 267-273). New York: Springer.
  • Sasaki, K., Tanaka, T., Nishizawa, Y. and Hayashi, M. (1990). Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent waste from an anaerobic digestor. Appl. Microbiol. Biot., 32: 727-731.
  • Kars, G. and Gündüz, U. (2010). Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. Int. J. Hydrogen Energy, 35, 6646-6656.
  • Akköse, S., Gündüz, U., Yücel, M. and Eroğlu, İ. (2009). Effects of ammonium ion, acetate, and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides O.U.001. Int. J. Hydrogen Energy, 34, 8818-8827.
  • Uyar, B., Eroğlu, İ., Yücel, M., Gündüz, U. and Türker, L. (2007). Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int. J. Hydrogen Energy, 32(18), 4670-4677.
  • Mauzerall, D. and Granick, S. (1956). The occurrence and determination of d-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem., 219, 435-446.
  • Waligorska, M., Seifert, K., Szymanska, K. and Łaniecki, M. (2006). Optimization of activation conditions of Rhodobacter sphaeroides in hydrogen generation process. J. Appl. Microbiol., 101, 775-784.
  • Kars, G. and Emsen, A. (2019). Hydrogen generation by Rhodobacter sphaeroides O.U.001 using pretreated waste barley. Cumhuriyet Sci. J., 40(2), 414-423.
  • Kamiyama, H., Hotta, Y., Tanaka, T., Nishikawa, S. and Sasaki, K. (2000). Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacterium. Seibutsu Kogaku Kaishi, 78, 48-55.
  • Sasaki, K., Tanaka, T., Nishizawa, Y. and Nagai, S. (1993). Effect of pH on the extracellular production of 5-aminolevulinic acid by Rhodobacter sphaeroides from volatile fatty acid. Biotechnol. Lett., 15(8), 859-864.
There are 25 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Gökhan Kars 0000-0002-2507-2305

Ümmühan Alparslan 0000-0002-4107-3420

Project Number BAP-11401112
Publication Date November 1, 2020
Published in Issue Year 2020

Cite

APA Kars, G., & Alparslan, Ü. (2020). Evaluation of High Concentrations of Sugar Beet Molasses as Substrate for Hydrogen and 5-Aminolevulinic Acid Productions. International Journal of Advances in Engineering and Pure Sciences, 32(4), 398-404. https://doi.org/10.7240/jeps.647523
AMA Kars G, Alparslan Ü. Evaluation of High Concentrations of Sugar Beet Molasses as Substrate for Hydrogen and 5-Aminolevulinic Acid Productions. JEPS. November 2020;32(4):398-404. doi:10.7240/jeps.647523
Chicago Kars, Gökhan, and Ümmühan Alparslan. “Evaluation of High Concentrations of Sugar Beet Molasses As Substrate for Hydrogen and 5-Aminolevulinic Acid Productions”. International Journal of Advances in Engineering and Pure Sciences 32, no. 4 (November 2020): 398-404. https://doi.org/10.7240/jeps.647523.
EndNote Kars G, Alparslan Ü (November 1, 2020) Evaluation of High Concentrations of Sugar Beet Molasses as Substrate for Hydrogen and 5-Aminolevulinic Acid Productions. International Journal of Advances in Engineering and Pure Sciences 32 4 398–404.
IEEE G. Kars and Ü. Alparslan, “Evaluation of High Concentrations of Sugar Beet Molasses as Substrate for Hydrogen and 5-Aminolevulinic Acid Productions”, JEPS, vol. 32, no. 4, pp. 398–404, 2020, doi: 10.7240/jeps.647523.
ISNAD Kars, Gökhan - Alparslan, Ümmühan. “Evaluation of High Concentrations of Sugar Beet Molasses As Substrate for Hydrogen and 5-Aminolevulinic Acid Productions”. International Journal of Advances in Engineering and Pure Sciences 32/4 (November 2020), 398-404. https://doi.org/10.7240/jeps.647523.
JAMA Kars G, Alparslan Ü. Evaluation of High Concentrations of Sugar Beet Molasses as Substrate for Hydrogen and 5-Aminolevulinic Acid Productions. JEPS. 2020;32:398–404.
MLA Kars, Gökhan and Ümmühan Alparslan. “Evaluation of High Concentrations of Sugar Beet Molasses As Substrate for Hydrogen and 5-Aminolevulinic Acid Productions”. International Journal of Advances in Engineering and Pure Sciences, vol. 32, no. 4, 2020, pp. 398-04, doi:10.7240/jeps.647523.
Vancouver Kars G, Alparslan Ü. Evaluation of High Concentrations of Sugar Beet Molasses as Substrate for Hydrogen and 5-Aminolevulinic Acid Productions. JEPS. 2020;32(4):398-404.