Year 2021,
Volume: 33 Issue: 2, 265 - 276, 31.03.2021
Begüm Ateşli
,
Oğul Esen
,
Serkan Sütlü
References
- [1] Abbey, H. (1952). An examination of the Reed-Frost theory of epidemics. Human biology, 24(3), 201.
- [2] Abou-Ismail, A. (2020). Compartmental Models of the COVID-19 Pandemic for Physicians and Physician-Scientists. Sn Comprehensive Clinical Medicine, 1.
- [3] Abraham, R., Marsden, J. E., & Marsden, J. E. (1978). Foundations of mechanics (Vol. 36). Reading, Massachusetts: Benjamin/Cummings Publishing Company.
- [4] Agore, A. L., & Militaru, G. (2014). Extending structures for Lie algebras. Monatshefte für Mathematik, 174(2), 169-193.
- [5] Agore, A., & Militaru, G. (2019). Extending Structures: Fundamentals and Applications. CRC Press.
- [6] Anderson, R. M. (2013). The population dynamics of infectious diseases: theory and applications. Springer.
- [7] Arnol'd, V. I. (2013). Mathematical methods of classical mechanics (Vol. 60). Springer Science & Business Media.
- [8] Ay, A., Gürses, M., & Zheltukhin, K. (2003). Hamiltonian equations in R 3. Journal of mathematical physics, 44(12), 5688-5705.
- [9] Ballesteros, A., Blasco, A., & Gutierrez-Sagredo, I. (2020). Hamiltonian structure of compartmental epidemiological models. arXiv preprint arXiv:2006.00564.
- [10] Brauer, F., Castillo-Chavez, C., & Castillo-Chavez, C. (2012). Mathematical models in population biology and epidemiology (Vol. 2, p. 508). New York: Springer.
- [11] Esen, O., Grmela, M., Gümral, H., & Pavelka, M. (2019). Lifts of symmetric tensors: fluids, plasma, and grad hierarchy. Entropy, 21(9), 907.
- [12] Esen, O., Pavelka, M., & Grmela, M. (2017). Hamiltonian coupling of electromagnetic field and matter. International Journal of Advances in Engineering Sciences and Applied Mathematics, 9(1), 3-20.
- [13] Esen, O., & Sütlü, S. (2016). Hamiltonian dynamics on matched pairs. International Journal of Geometric Methods in Modern Physics, 13(10), 1650128.
- [14] Esen, O., & Sütlü, S. (2020). Matched pair analysis of the Vlasov plasma. arXiv preprint arXiv:2004.12595.
- [15] Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM review, 42(4), 599-653.
- [16] Bäuerle, G. G., Kerf, E. A., & ten Kroode, A. P. E. (1997). Finite and infinite dimensional Lie algebras and applications in physics (Vol. 2). Elsevier.
- [17] Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772), 700-721.
- [18] Majid, S. (1990). Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations. Pacific Journal of Mathematics, 141(2), 311-332.
- [19] Marsden, J. E., Misiołek, G., Perlmutter, M., & Ratiu, T. S. (1998). Symplectic reduction for semidirect products and central extensions. Differential Geometry and its Applications, 9(1-2), 173-212.
- [20] Marsden, J. E., & Ratiu, T. S. (2013). Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems (Vol. 17). Springer Science & Business Media.
- [21] Marsden, J. E., Ratiu, T. S., & Weinstein, A. (1984). Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Cont. Math. AMS, 28, 55-100.
- [22] Murray, J. D. (2007). Mathematical biology: I. An introduction (Vol. 17). Springer Science & Business Media.
- [23] Nakamura, G. M., & Martinez, A. S. (2019). Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations. Scientific reports, 9(1), 1-9.
- [24] Nutku, Y. (1990). Bi-Hamiltonian structure of the Kermack-McKendrick model for epidemics. Journal of Physics A: Mathematical and General, 23(21), L1145.
- [25] Oliveira, G. (2020). Refined compartmental models, asymptomatic carriers and COVID-19. arXiv preprint arXiv:2004.14780.
- [26] Olver, P. J. (2000). Applications of Lie groups to differential equations (Vol. 107). Springer Science & Business Media.
- [27] Schottenloher, M. (2008). A mathematical introduction to conformal field theory (Vol. 759). Springer.
- [28] Șuhubi, E. S. (2008). Dış form analizi. Türkiye Bilimler Akademisi.
- [29] Vaisman, I. (2012). Lectures on the geometry of Poisson manifolds (Vol. 118). Birkhäuser.
- [30] Weinstein, A. (1983). The local structure of Poisson manifolds. Journal of differential geometry, 18(3), 523-557.
Epidemiyolojideki Kompartman Modellerinin Eşlenmiş Hamilton Analizi
Year 2021,
Volume: 33 Issue: 2, 265 - 276, 31.03.2021
Begüm Ateşli
,
Oğul Esen
,
Serkan Sütlü
Abstract
Epidemiyolojideki SIR, SEIR, 2-SIR ve 2-SEIR kompartman modellerinin Hamilton formülasyonuna yer verildi. Eşlenmiş Lie-Poisson sistemleri hatırlatıldı. SIR ve SEIR modellerinin eşlenmiş Lie-Poisson sistemi oldukları gösterildi. Bükülmüş eşçevrim genişlemesi kullanılarak eşlenmiş Lie-Poisson denklemlerinin bir genelleştirilmesi elde edildi. SIR ve SEIR kompartman modellerinin iki popülasyon karşılığı olan 2-SIR ve 2-SEIR modellerinin bükülmüş eşçevrim genişlemesiyle elde edilmiş Lie-Poisson sistemi olarak ifade edilebilecekleri gösterildi.
Supporting Institution
Tübitak
Thanks
Bu çalışma, TÜBITAK’ın 117F426 numaralı "Eşlenmis Lagrange ve Hamilton Sistemleri" isimli projesinin bir parçasıdır. Desteği için TÜBITAK’a teşekkür ederiz.
References
- [1] Abbey, H. (1952). An examination of the Reed-Frost theory of epidemics. Human biology, 24(3), 201.
- [2] Abou-Ismail, A. (2020). Compartmental Models of the COVID-19 Pandemic for Physicians and Physician-Scientists. Sn Comprehensive Clinical Medicine, 1.
- [3] Abraham, R., Marsden, J. E., & Marsden, J. E. (1978). Foundations of mechanics (Vol. 36). Reading, Massachusetts: Benjamin/Cummings Publishing Company.
- [4] Agore, A. L., & Militaru, G. (2014). Extending structures for Lie algebras. Monatshefte für Mathematik, 174(2), 169-193.
- [5] Agore, A., & Militaru, G. (2019). Extending Structures: Fundamentals and Applications. CRC Press.
- [6] Anderson, R. M. (2013). The population dynamics of infectious diseases: theory and applications. Springer.
- [7] Arnol'd, V. I. (2013). Mathematical methods of classical mechanics (Vol. 60). Springer Science & Business Media.
- [8] Ay, A., Gürses, M., & Zheltukhin, K. (2003). Hamiltonian equations in R 3. Journal of mathematical physics, 44(12), 5688-5705.
- [9] Ballesteros, A., Blasco, A., & Gutierrez-Sagredo, I. (2020). Hamiltonian structure of compartmental epidemiological models. arXiv preprint arXiv:2006.00564.
- [10] Brauer, F., Castillo-Chavez, C., & Castillo-Chavez, C. (2012). Mathematical models in population biology and epidemiology (Vol. 2, p. 508). New York: Springer.
- [11] Esen, O., Grmela, M., Gümral, H., & Pavelka, M. (2019). Lifts of symmetric tensors: fluids, plasma, and grad hierarchy. Entropy, 21(9), 907.
- [12] Esen, O., Pavelka, M., & Grmela, M. (2017). Hamiltonian coupling of electromagnetic field and matter. International Journal of Advances in Engineering Sciences and Applied Mathematics, 9(1), 3-20.
- [13] Esen, O., & Sütlü, S. (2016). Hamiltonian dynamics on matched pairs. International Journal of Geometric Methods in Modern Physics, 13(10), 1650128.
- [14] Esen, O., & Sütlü, S. (2020). Matched pair analysis of the Vlasov plasma. arXiv preprint arXiv:2004.12595.
- [15] Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM review, 42(4), 599-653.
- [16] Bäuerle, G. G., Kerf, E. A., & ten Kroode, A. P. E. (1997). Finite and infinite dimensional Lie algebras and applications in physics (Vol. 2). Elsevier.
- [17] Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772), 700-721.
- [18] Majid, S. (1990). Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations. Pacific Journal of Mathematics, 141(2), 311-332.
- [19] Marsden, J. E., Misiołek, G., Perlmutter, M., & Ratiu, T. S. (1998). Symplectic reduction for semidirect products and central extensions. Differential Geometry and its Applications, 9(1-2), 173-212.
- [20] Marsden, J. E., & Ratiu, T. S. (2013). Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems (Vol. 17). Springer Science & Business Media.
- [21] Marsden, J. E., Ratiu, T. S., & Weinstein, A. (1984). Reduction and Hamiltonian structures on duals of semidirect product Lie algebras. Cont. Math. AMS, 28, 55-100.
- [22] Murray, J. D. (2007). Mathematical biology: I. An introduction (Vol. 17). Springer Science & Business Media.
- [23] Nakamura, G. M., & Martinez, A. S. (2019). Hamiltonian dynamics of the SIS epidemic model with stochastic fluctuations. Scientific reports, 9(1), 1-9.
- [24] Nutku, Y. (1990). Bi-Hamiltonian structure of the Kermack-McKendrick model for epidemics. Journal of Physics A: Mathematical and General, 23(21), L1145.
- [25] Oliveira, G. (2020). Refined compartmental models, asymptomatic carriers and COVID-19. arXiv preprint arXiv:2004.14780.
- [26] Olver, P. J. (2000). Applications of Lie groups to differential equations (Vol. 107). Springer Science & Business Media.
- [27] Schottenloher, M. (2008). A mathematical introduction to conformal field theory (Vol. 759). Springer.
- [28] Șuhubi, E. S. (2008). Dış form analizi. Türkiye Bilimler Akademisi.
- [29] Vaisman, I. (2012). Lectures on the geometry of Poisson manifolds (Vol. 118). Birkhäuser.
- [30] Weinstein, A. (1983). The local structure of Poisson manifolds. Journal of differential geometry, 18(3), 523-557.