Research Article
BibTex RIS Cite

Robust Function-on-Function Regression: A Penalized Tau-based Estimation Approach

Year 2025, Volume: 37 Issue: UYIK 2024 Special Issue, 1 - 6
https://doi.org/10.7240/jeps.1496164

Abstract

This study introduces a novel penalized estimation method tailored for function-on-function regression models, combining the robustness of the Tau estimator with penalization techniques to enhance resistance to outliers. Function-on-function regression is essential for modeling intricate relationships between functional predictors and response variables across diverse fields. However, traditional methods often struggle with outliers, leading to biased estimates and diminished predictive performance. Our proposed approach addresses this challenge by integrating robust Tau estimation with penalization, promoting both robustness and parsimony in parameter estimation. Theoretical foundations of the penalized Tau estimator within function-on-function regression are discussed, along with empirical validations through simulation studies and an empirical data analysis. By incorporating penalization, our method not only ensures robust estimation of regression parameters but also promotes model simplicity, offering enhanced interpretability and generalization capabilities in functional data analysis.

References

  • Ramsay, J.O., & Silverman, B.W. (2006). Functional data analysis, 2nd edn. Springer, New York.
  • Horvath, L., & Kokoszka, P. (2012). Inference for functional data with applications, Springer, New York.
  • Kokoszka, P., & Reimherr, M. (2015). Introduction to functional data analysis, CRC Press, London.
  • Yamanishi, Y., & Tanaka, Y. (2003). Geographically weighted functional multiple regression analysis: A numerical investigation, Journal of the Japanese Society of Computational Statistics, 15, 307–317.
  • Yao, F., Müller, H.-G., & Wang, J.-L. (2005). Functional linear regression analysis for longitudinal data, The Annals of Statistics, 33, 2873–2903.
  • Matsui, H., Kawano, S., & Konishi, S. (2009). Regularized functional regression modeling for functional response and predictors, Journal of Math-for-Industry, 1, 17–25.
  • Ivanescu, A. E., Staicu, A.-M., Scheipl, F., & Greven, S. (2015). Penalized function-on-function regression, Computational Statistics, 30, 539–568.
  • Beyaztas, U., & Shang, H.L. (2020). On function-on-function regression: Partial least squares approach, Environmental and Ecological Statistics, 27, 95–114.
  • Hullait, H., Leslie, D.S., Pavlidis, N. G., & King, S. (2021). Robust function-on-function regression, Technometrics, 63, 396–409.
  • Beyaztas, U., & Shang, H.L. (2022). A robust partial least squares approach for function-on-function regression, Brazilian Journal of Probability and Statistics, 36, 199-219.
  • Cai, X., Xue, L., & Cao, J. (2021). Robust penalized M-estimation for function-on-function linear regression, Stat 10, e390.
  • Beyaztas, U., Shang, H.L., & Mandal, A. (2023). Robust function-on-function interaction regression, Statistical Modelling, in-press.
  • Yohai, V.J., & Zamar, R.H. (1988). High breakdown-point estimates of regression by means of the minimization of an efficient scale, Journal of the American Statistical Association: Theory and Methods, 83, 406–413.
  • Beyaztas, U., Shang, H.L., & Saricam, S. (2024). Penalized function-on-function linear quantile regression, Computational Statistics, in-press.
  • Salibian-Barrera, M., Willems, G., & Zamar, R. (2008). The fast-τ estimator for regression, Journal of Computational and Graphical Statistics, 17, 659-682.

Dirençli Fonksiyon-Fonksiyon Regresyon Modeli: Cezalandırılmış Tau-tabanlı Tahmin Yöntemi

Year 2025, Volume: 37 Issue: UYIK 2024 Special Issue, 1 - 6
https://doi.org/10.7240/jeps.1496164

Abstract

Bu çalışma, fonksiyon-fonksiyon regresyon modellerine yönelik yeni bir cezalandırılmış tahmin yöntemini tanıtmaktadır ve Tau tahmin edicisinin sağlamlığını cezalandırma teknikleriyle birleştirerek aykırı değerlere karşı direnci artırmaktadır. Fonksiyon-fonksiyon regresyon, fonksiyonel bağımsız değişkenler ile yanıt değişkenleri arasındaki karmaşık ilişkileri modellemek için çeşitli alanlarda gereklidir. Ancak geleneksel yöntemler genellikle aykırı değerlerle başa çıkmakta zorlanır ve bu durum yanlı tahminlere ve zayıd tahmin performansına yol açar. Önerilen yaklaşımımız, sağlam Tau tahminini cezalandırma ile birleştirerek bu zorluğun üstesinden gelmekte ve parametre tahmininde hem sağlamlığı hem de tutarlılığı sağlamaktadır. Fonksiyon-fonksiyon regresyon içinde cezalandırılmış Tau tahmin edicisinin teorik temelleri tartışılmakta, simülasyon çalışmaları ve ampirik veri analizleri yoluyla ampirik doğrulamalar sunulmaktadır. Cezalandırmayı dahil ederek, yöntemimiz yalnızca regresyon parametrelerinin sağlam tahminini sağlamakla kalmaz, aynı zamanda modelin basitliğini teşvik ederek fonksiyonel veri analizinde daha iyi yorumlanabilirlik ve genelleme yetenekleri sunar.

References

  • Ramsay, J.O., & Silverman, B.W. (2006). Functional data analysis, 2nd edn. Springer, New York.
  • Horvath, L., & Kokoszka, P. (2012). Inference for functional data with applications, Springer, New York.
  • Kokoszka, P., & Reimherr, M. (2015). Introduction to functional data analysis, CRC Press, London.
  • Yamanishi, Y., & Tanaka, Y. (2003). Geographically weighted functional multiple regression analysis: A numerical investigation, Journal of the Japanese Society of Computational Statistics, 15, 307–317.
  • Yao, F., Müller, H.-G., & Wang, J.-L. (2005). Functional linear regression analysis for longitudinal data, The Annals of Statistics, 33, 2873–2903.
  • Matsui, H., Kawano, S., & Konishi, S. (2009). Regularized functional regression modeling for functional response and predictors, Journal of Math-for-Industry, 1, 17–25.
  • Ivanescu, A. E., Staicu, A.-M., Scheipl, F., & Greven, S. (2015). Penalized function-on-function regression, Computational Statistics, 30, 539–568.
  • Beyaztas, U., & Shang, H.L. (2020). On function-on-function regression: Partial least squares approach, Environmental and Ecological Statistics, 27, 95–114.
  • Hullait, H., Leslie, D.S., Pavlidis, N. G., & King, S. (2021). Robust function-on-function regression, Technometrics, 63, 396–409.
  • Beyaztas, U., & Shang, H.L. (2022). A robust partial least squares approach for function-on-function regression, Brazilian Journal of Probability and Statistics, 36, 199-219.
  • Cai, X., Xue, L., & Cao, J. (2021). Robust penalized M-estimation for function-on-function linear regression, Stat 10, e390.
  • Beyaztas, U., Shang, H.L., & Mandal, A. (2023). Robust function-on-function interaction regression, Statistical Modelling, in-press.
  • Yohai, V.J., & Zamar, R.H. (1988). High breakdown-point estimates of regression by means of the minimization of an efficient scale, Journal of the American Statistical Association: Theory and Methods, 83, 406–413.
  • Beyaztas, U., Shang, H.L., & Saricam, S. (2024). Penalized function-on-function linear quantile regression, Computational Statistics, in-press.
  • Salibian-Barrera, M., Willems, G., & Zamar, R. (2008). The fast-τ estimator for regression, Journal of Computational and Graphical Statistics, 17, 659-682.
There are 15 citations in total.

Details

Primary Language English
Subjects Statistical Theory
Journal Section Research Articles
Authors

Ufuk Beyaztaş 0000-0002-5208-4950

Early Pub Date January 9, 2025
Publication Date
Submission Date June 5, 2024
Acceptance Date July 23, 2024
Published in Issue Year 2025 Volume: 37 Issue: UYIK 2024 Special Issue

Cite

APA Beyaztaş, U. (2025). Robust Function-on-Function Regression: A Penalized Tau-based Estimation Approach. International Journal of Advances in Engineering and Pure Sciences, 37(UYIK 2024 Special Issue), 1-6. https://doi.org/10.7240/jeps.1496164
AMA Beyaztaş U. Robust Function-on-Function Regression: A Penalized Tau-based Estimation Approach. JEPS. January 2025;37(UYIK 2024 Special Issue):1-6. doi:10.7240/jeps.1496164
Chicago Beyaztaş, Ufuk. “Robust Function-on-Function Regression: A Penalized Tau-Based Estimation Approach”. International Journal of Advances in Engineering and Pure Sciences 37, no. UYIK 2024 Special Issue (January 2025): 1-6. https://doi.org/10.7240/jeps.1496164.
EndNote Beyaztaş U (January 1, 2025) Robust Function-on-Function Regression: A Penalized Tau-based Estimation Approach. International Journal of Advances in Engineering and Pure Sciences 37 UYIK 2024 Special Issue 1–6.
IEEE U. Beyaztaş, “Robust Function-on-Function Regression: A Penalized Tau-based Estimation Approach”, JEPS, vol. 37, no. UYIK 2024 Special Issue, pp. 1–6, 2025, doi: 10.7240/jeps.1496164.
ISNAD Beyaztaş, Ufuk. “Robust Function-on-Function Regression: A Penalized Tau-Based Estimation Approach”. International Journal of Advances in Engineering and Pure Sciences 37/UYIK 2024 Special Issue (January 2025), 1-6. https://doi.org/10.7240/jeps.1496164.
JAMA Beyaztaş U. Robust Function-on-Function Regression: A Penalized Tau-based Estimation Approach. JEPS. 2025;37:1–6.
MLA Beyaztaş, Ufuk. “Robust Function-on-Function Regression: A Penalized Tau-Based Estimation Approach”. International Journal of Advances in Engineering and Pure Sciences, vol. 37, no. UYIK 2024 Special Issue, 2025, pp. 1-6, doi:10.7240/jeps.1496164.
Vancouver Beyaztaş U. Robust Function-on-Function Regression: A Penalized Tau-based Estimation Approach. JEPS. 2025;37(UYIK 2024 Special Issue):1-6.