Research Article
BibTex RIS Cite

Doğrusal Olmayan Regresyondaki Kendinden Eşik Değerli Otoregresif Hatalar Sorununa Uyarlamalı Bir Yaklaşım

Year 2025, Volume: 37 Issue: 3, 231 - 242, 24.09.2025
https://doi.org/10.7240/jeps.1663259

Abstract

Bu çalışma, doğrusal olmayan regresyon modellerinde kendinden eşik değerli otoregresif (KEDAR) hataların varlığında etkin parametre kestirimleri elde edebilmeyi amaçlamaktadır. Bu doğrultuda, otoregresif (AR) süreçlere karşı önerilen iki aşamalı en küçük kareler (İAEKK) yöntemi KEDAR süreçleri için ele alınacak ve etkin parametre kestirimleri elde edilebilmesi için uyarlamalı bir yaklaşım araştırılacaktır. Karesel çokterimli (polinomiyel) daraltma fonksiyonu kullanılarak İAEKK yöntemine bir uyarlama yapılıp bu yeni yaklaşımın etkinliği farklı senaryolar altında bir benzetim çalışması ile incelenecektir.

Ethical Statement

Herhangi bir etik kurul raporuna ihtiyaç yoktur.

Supporting Institution

Mimar Sinan Güzel Sanatlar Üniversitesi

Project Number

2019-29

Thanks

Bu çalışma, Mimar Sinan Güzel Sanatlar Üniversitesi tarafından desteklenen 2019-29 numaralı bilimsel araştırma projesinden üretilmiştir.

References

  • Gallant, A.R. (1987). Nonlinear Statistical Models. John Wiley and Sons, New York.
  • Gallant, A.R. ve Goebel, J.J. (1976). Nonlinear regression with autocorrelated errors. Journal of the American Statistical Association, 71(356), 961-967.
  • Glasbey, C.A. (1980). Nonlinear regression with autoregressive time series errors. Biometrics, 36(1), 135-139.
  • Glasbey, C.A. (1979). Correlated Residuals in Nonlinear Regression Applied to Growth Data. Applied Statistics, 28(3), 251-259.
  • Glasbey, C.A. (1988). Examples of Regression with Serially Correlated Errors. The Statistician, 37(3), 277-291.
  • Huang, M.N.L. ve Huang, M.K. (1991). A Parameter-Elimination Method for Nonlinear Regression with Linear Parameters and Autocorrelated Errors. Biometrical Journal, 33(8), 937-950.
  • Bender, R. ve Heinemann, L. (1995). Fitting Nonlinear Regression Models with Correlated Errors to Individual Pharmacodynamic Data Using SAS Software. Journal of Pharmacokinetics and Biopharmaceutics, 23(1), 87-100.
  • Aşıkgil, B. ve Erar, A. (2013). Polynomial tapered two-stage least squares method in nonlinear regression. Applied Mathematics and Computation, 219(18), 9743-9754.
  • Enders, W. (1995). Applied Econometric Time Series. John Wiley and Sons, New York.
  • Tong, H. (1983). Threshold Models in Nonlinear Time Series Analysis. Lecture Notes in Statistics, Springer-Verlag, New York.
  • Tsay, R.S. (1989). Testing and modeling threshold autoregressive processes. Journal of the American Statistical Association, 84(405), 231-240.
  • Chan, K.S. ve Tong, H. (1986). On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 7(3), 179-190.
  • Chan, K.S. (1993). Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. The Annals of Statistics, 21(1), 520-533.
  • Chan, W.S. ve Cheung, S.H. (1994). On robust estimation of threshold autoregressions. Journal of Forecasting, 13(1), 37-49.
  • Jaras, J. ve Gishani, A.M. (2010). Threshold Detection in Autoregressive Nonlinear Models. MSc. Thesis, Lund University, Sweden.
  • Seber, G.A.F. ve Wild, C.J. (1989). Nonlinear Regression. John Wiley and Sons, New York.
  • Aşıkgil, B. (2018). An Adapted Approach for Self -Exciting Threshold Autoregressive Disturbances in Multiple Linear Regression. Gazi University Journal of Science, 31(4), 1268-1282.

An Adaptive Estimation Method for Nonlinear Regression with Self-Exciting Threshold Autoregressive Errors

Year 2025, Volume: 37 Issue: 3, 231 - 242, 24.09.2025
https://doi.org/10.7240/jeps.1663259

Abstract

This study aims to obtain efficient parameter estimates in the presence of self-exciting threshold autoregressive (SETAR) errors in nonlinear regression models. In this way, the two-stage least squares (TSLS) method proposed for autoregressive (AR) processes is discussed for SETAR processes and an adaptive approach is investigated to obtain efficient parameter estimates. An adaptation of TSLS method is made by using a quadratic polynomial tapering function and the efficiency of this new approach is examined with a simulation study under different scenarios.

Project Number

2019-29

References

  • Gallant, A.R. (1987). Nonlinear Statistical Models. John Wiley and Sons, New York.
  • Gallant, A.R. ve Goebel, J.J. (1976). Nonlinear regression with autocorrelated errors. Journal of the American Statistical Association, 71(356), 961-967.
  • Glasbey, C.A. (1980). Nonlinear regression with autoregressive time series errors. Biometrics, 36(1), 135-139.
  • Glasbey, C.A. (1979). Correlated Residuals in Nonlinear Regression Applied to Growth Data. Applied Statistics, 28(3), 251-259.
  • Glasbey, C.A. (1988). Examples of Regression with Serially Correlated Errors. The Statistician, 37(3), 277-291.
  • Huang, M.N.L. ve Huang, M.K. (1991). A Parameter-Elimination Method for Nonlinear Regression with Linear Parameters and Autocorrelated Errors. Biometrical Journal, 33(8), 937-950.
  • Bender, R. ve Heinemann, L. (1995). Fitting Nonlinear Regression Models with Correlated Errors to Individual Pharmacodynamic Data Using SAS Software. Journal of Pharmacokinetics and Biopharmaceutics, 23(1), 87-100.
  • Aşıkgil, B. ve Erar, A. (2013). Polynomial tapered two-stage least squares method in nonlinear regression. Applied Mathematics and Computation, 219(18), 9743-9754.
  • Enders, W. (1995). Applied Econometric Time Series. John Wiley and Sons, New York.
  • Tong, H. (1983). Threshold Models in Nonlinear Time Series Analysis. Lecture Notes in Statistics, Springer-Verlag, New York.
  • Tsay, R.S. (1989). Testing and modeling threshold autoregressive processes. Journal of the American Statistical Association, 84(405), 231-240.
  • Chan, K.S. ve Tong, H. (1986). On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 7(3), 179-190.
  • Chan, K.S. (1993). Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. The Annals of Statistics, 21(1), 520-533.
  • Chan, W.S. ve Cheung, S.H. (1994). On robust estimation of threshold autoregressions. Journal of Forecasting, 13(1), 37-49.
  • Jaras, J. ve Gishani, A.M. (2010). Threshold Detection in Autoregressive Nonlinear Models. MSc. Thesis, Lund University, Sweden.
  • Seber, G.A.F. ve Wild, C.J. (1989). Nonlinear Regression. John Wiley and Sons, New York.
  • Aşıkgil, B. (2018). An Adapted Approach for Self -Exciting Threshold Autoregressive Disturbances in Multiple Linear Regression. Gazi University Journal of Science, 31(4), 1268-1282.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Statistical Analysis, Statistical Theory
Journal Section Research Articles
Authors

Barış Aşıkgil 0000-0002-1408-3797

Project Number 2019-29
Early Pub Date September 15, 2025
Publication Date September 24, 2025
Submission Date March 25, 2025
Acceptance Date July 5, 2025
Published in Issue Year 2025 Volume: 37 Issue: 3

Cite

APA Aşıkgil, B. (2025). Doğrusal Olmayan Regresyondaki Kendinden Eşik Değerli Otoregresif Hatalar Sorununa Uyarlamalı Bir Yaklaşım. International Journal of Advances in Engineering and Pure Sciences, 37(3), 231-242. https://doi.org/10.7240/jeps.1663259
AMA Aşıkgil B. Doğrusal Olmayan Regresyondaki Kendinden Eşik Değerli Otoregresif Hatalar Sorununa Uyarlamalı Bir Yaklaşım. JEPS. September 2025;37(3):231-242. doi:10.7240/jeps.1663259
Chicago Aşıkgil, Barış. “Doğrusal Olmayan Regresyondaki Kendinden Eşik Değerli Otoregresif Hatalar Sorununa Uyarlamalı Bir Yaklaşım”. International Journal of Advances in Engineering and Pure Sciences 37, no. 3 (September 2025): 231-42. https://doi.org/10.7240/jeps.1663259.
EndNote Aşıkgil B (September 1, 2025) Doğrusal Olmayan Regresyondaki Kendinden Eşik Değerli Otoregresif Hatalar Sorununa Uyarlamalı Bir Yaklaşım. International Journal of Advances in Engineering and Pure Sciences 37 3 231–242.
IEEE B. Aşıkgil, “Doğrusal Olmayan Regresyondaki Kendinden Eşik Değerli Otoregresif Hatalar Sorununa Uyarlamalı Bir Yaklaşım”, JEPS, vol. 37, no. 3, pp. 231–242, 2025, doi: 10.7240/jeps.1663259.
ISNAD Aşıkgil, Barış. “Doğrusal Olmayan Regresyondaki Kendinden Eşik Değerli Otoregresif Hatalar Sorununa Uyarlamalı Bir Yaklaşım”. International Journal of Advances in Engineering and Pure Sciences 37/3 (September2025), 231-242. https://doi.org/10.7240/jeps.1663259.
JAMA Aşıkgil B. Doğrusal Olmayan Regresyondaki Kendinden Eşik Değerli Otoregresif Hatalar Sorununa Uyarlamalı Bir Yaklaşım. JEPS. 2025;37:231–242.
MLA Aşıkgil, Barış. “Doğrusal Olmayan Regresyondaki Kendinden Eşik Değerli Otoregresif Hatalar Sorununa Uyarlamalı Bir Yaklaşım”. International Journal of Advances in Engineering and Pure Sciences, vol. 37, no. 3, 2025, pp. 231-42, doi:10.7240/jeps.1663259.
Vancouver Aşıkgil B. Doğrusal Olmayan Regresyondaki Kendinden Eşik Değerli Otoregresif Hatalar Sorununa Uyarlamalı Bir Yaklaşım. JEPS. 2025;37(3):231-42.